eigh_tridiagonal — SciPy v1.15.2 Manual (original) (raw)
scipy.linalg.
scipy.linalg.eigh_tridiagonal(d, e, eigvals_only=False, select='a', select_range=None, check_finite=True, tol=0.0, lapack_driver='auto')[source]#
Solve eigenvalue problem for a real symmetric tridiagonal matrix.
Find eigenvalues w and optionally right eigenvectors v of a
:
a v[:,i] = w[i] v[:,i] v.H v = identity
For a real symmetric matrix a
with diagonal elements d and off-diagonal elements e.
Parameters:
dndarray, shape (ndim,)
The diagonal elements of the array.
endarray, shape (ndim-1,)
The off-diagonal elements of the array.
eigvals_onlybool, optional
Compute only the eigenvalues and no eigenvectors. (Default: calculate also eigenvectors)
select{‘a’, ‘v’, ‘i’}, optional
Which eigenvalues to calculate
select | calculated |
---|---|
‘a’ | All eigenvalues |
‘v’ | Eigenvalues in the interval (min, max] |
‘i’ | Eigenvalues with indices min <= i <= max |
select_range(min, max), optional
Range of selected eigenvalues
check_finitebool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
tolfloat
The absolute tolerance to which each eigenvalue is required (only used when ‘stebz’ is the lapack_driver). An eigenvalue (or cluster) is considered to have converged if it lies in an interval of this width. If <= 0. (default), the value eps*|a|
is used where eps is the machine precision, and |a|
is the 1-norm of the matrix a
.
lapack_driverstr
LAPACK function to use, can be ‘auto’, ‘stemr’, ‘stebz’, ‘sterf’, or ‘stev’. When ‘auto’ (default), it will use ‘stemr’ if select='a'
and ‘stebz’ otherwise. When ‘stebz’ is used to find the eigenvalues andeigvals_only=False
, then a second LAPACK call (to ?STEIN
) is used to find the corresponding eigenvectors. ‘sterf’ can only be used when eigvals_only=True
and select='a'
. ‘stev’ can only be used when select='a'
.
Returns:
w(M,) ndarray
The eigenvalues, in ascending order, each repeated according to its multiplicity.
v(M, M) ndarray
The normalized eigenvector corresponding to the eigenvalue w[i]
is the column v[:,i]
. Only returned if eigvals_only=False
.
Raises:
LinAlgError
If eigenvalue computation does not converge.
See also
eigenvalues of symmetric/Hermitian tridiagonal matrices
eigenvalues and right eigenvectors for non-symmetric arrays
eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eigenvalues and right eigenvectors for symmetric/Hermitian band matrices
Notes
This function makes use of LAPACK S/DSTEMR
routines.
Examples
import numpy as np from scipy.linalg import eigh_tridiagonal d = 3np.ones(4) e = -1np.ones(3) w, v = eigh_tridiagonal(d, e) A = np.diag(d) + np.diag(e, k=1) + np.diag(e, k=-1) np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4))) True