fourier_uniform — SciPy v1.15.2 Manual (original) (raw)
scipy.ndimage.
scipy.ndimage.fourier_uniform(input, size, n=-1, axis=-1, output=None)[source]#
Multidimensional uniform fourier filter.
The array is multiplied with the Fourier transform of a box of given size.
Parameters:
inputarray_like
The input array.
sizefloat or sequence
The size of the box used for filtering. If a float, size is the same for all axes. If a sequence, size has to contain one value for each axis.
nint, optional
If n is negative (default), then the input is assumed to be the result of a complex fft. If n is larger than or equal to zero, the input is assumed to be the result of a real fft, and n gives the length of the array before transformation along the real transform direction.
axisint, optional
The axis of the real transform.
outputndarray, optional
If given, the result of filtering the input is placed in this array.
Returns:
fourier_uniformndarray
The filtered input.
Examples
from scipy import ndimage, datasets import numpy.fft import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(1, 2) plt.gray() # show the filtered result in grayscale ascent = datasets.ascent() input_ = numpy.fft.fft2(ascent) result = ndimage.fourier_uniform(input_, size=20) result = numpy.fft.ifft2(result) ax1.imshow(ascent) ax2.imshow(result.real) # the imaginary part is an artifact plt.show()