dlti — SciPy v1.15.3 Manual (original) (raw)
scipy.signal.
class scipy.signal.dlti(*system, **kwargs)[source]#
Discrete-time linear time invariant system base class.
Parameters:
*system: arguments
The dlti class can be instantiated with either 2, 3 or 4 arguments. The following gives the number of arguments and the corresponding discrete-time subclass that is created:
- 2: TransferFunction: (numerator, denominator)
- 3: ZerosPolesGain: (zeros, poles, gain)
- 4: StateSpace: (A, B, C, D)
Each argument can be an array or a sequence.
dt: float, optional
Sampling time [s] of the discrete-time systems. Defaults to True
(unspecified sampling time). Must be specified as a keyword argument, for example, dt=0.1
.
Notes
dlti instances do not exist directly. Instead, dlti creates an instance of one of its subclasses: StateSpace, TransferFunction orZerosPolesGain.
Changing the value of properties that are not directly part of the current system representation (such as the zeros of a StateSpace system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, callsys = sys.to_zpk()
before accessing/changing the zeros, poles or gain.
If (numerator, denominator) is passed in for *system
, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., z^2 + 3z + 5
would be represented as [1, 3, 5]
).
Added in version 0.18.0.
Examples
from scipy import signal
signal.dlti(1, 2, 3, 4) StateSpaceDiscrete( array([[1]]), array([[2]]), array([[3]]), array([[4]]), dt: True )
signal.dlti(1, 2, 3, 4, dt=0.1) StateSpaceDiscrete( array([[1]]), array([[2]]), array([[3]]), array([[4]]), dt: 0.1 )
Construct the transfer function\(H(z) = \frac{5(z - 1)(z - 2)}{(z - 3)(z - 4)}\) with a sampling time of 0.1 seconds:
signal.dlti([1, 2], [3, 4], 5, dt=0.1) ZerosPolesGainDiscrete( array([1, 2]), array([3, 4]), 5, dt: 0.1 )
Construct the transfer function \(H(z) = \frac{3z + 4}{1z + 2}\) with a sampling time of 0.1 seconds:
signal.dlti([3, 4], [1, 2], dt=0.1) TransferFunctionDiscrete( array([3., 4.]), array([1., 2.]), dt: 0.1 )
Attributes:
Return the sampling time of the system.
Poles of the system.
Zeros of the system.
Methods
bode([w, n]) | Calculate Bode magnitude and phase data of a discrete-time system. |
---|---|
freqresp([w, n, whole]) | Calculate the frequency response of a discrete-time system. |
impulse([x0, t, n]) | Return the impulse response of the discrete-time dlti system. |
output(u, t[, x0]) | Return the response of the discrete-time system to input u. |
step([x0, t, n]) | Return the step response of the discrete-time dlti system. |