dok_array ā SciPy v1.15.2 Manual (original) (raw)
scipy.sparse.
class scipy.sparse.dok_array(arg1, shape=None, dtype=None, copy=False, *, maxprint=None)[source]#
Dictionary Of Keys based sparse array.
This is an efficient structure for constructing sparse arrays incrementally.
This can be instantiated in several ways:
dok_array(D)
where D is a 2-D ndarray
dok_array(S)
with another sparse array or matrix S (equivalent to S.todok())
dok_array((M,N), [dtype])
create the array with initial shape (M,N) dtype is optional, defaulting to dtype=ādā
Notes
Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
- Allows for efficient O(1) access of individual elements.
- Duplicates are not allowed.
- Can be efficiently converted to a coo_array once constructed.
Examples
import numpy as np from scipy.sparse import dok_array S = dok_array((5, 5), dtype=np.float32) for i in range(5): ... for j in range(5): ... S[i, j] = i + j # Update element
Attributes:
dtypedtype
Data type of the array
shape2-tuple
Shape of the array
ndimint
Number of dimensions (this is always 2)
Number of stored values, including explicit zeros.
Number of stored values.
Transpose.
Methods
__len__() | Return len(self). |
---|---|
asformat(format[, copy]) | Return this array/matrix in the passed format. |
astype(dtype[, casting, copy]) | Cast the array/matrix elements to a specified type. |
clear() | |
conj([copy]) | Element-wise complex conjugation. |
conjtransp() | DEPRECATED: Return the conjugate transpose. |
conjugate([copy]) | Element-wise complex conjugation. |
copy() | Returns a copy of this array/matrix. |
count_nonzero([axis]) | Number of non-zero entries, equivalent to |
diagonal([k]) | Returns the kth diagonal of the array/matrix. |
dot(other) | Ordinary dot product |
fromkeys(iterable[, value]) | Create a new dictionary with keys from iterable and values set to value. |
get(key[, default]) | This provides dict.get method functionality with type checking |
items() | |
keys() | |
maximum(other) | Element-wise maximum between this and another array/matrix. |
mean([axis, dtype, out]) | Compute the arithmetic mean along the specified axis. |
minimum(other) | Element-wise minimum between this and another array/matrix. |
multiply(other) | Point-wise multiplication by another array/matrix. |
nonzero() | Nonzero indices of the array/matrix. |
pop(k[,d]) | If the key is not found, return the default if given; otherwise, raise a KeyError. |
popitem() | Remove and return a (key, value) pair as a 2-tuple. |
power(n[, dtype]) | Element-wise power. |
reshape(self, shape[, order, copy]) | Gives a new shape to a sparse array/matrix without changing its data. |
resize(*shape) | Resize the array/matrix in-place to dimensions given by shape |
setdefault(key[, default]) | Insert key with a value of default if key is not in the dictionary. |
setdiag(values[, k]) | Set diagonal or off-diagonal elements of the array/matrix. |
sum([axis, dtype, out]) | Sum the array/matrix elements over a given axis. |
toarray([order, out]) | Return a dense ndarray representation of this sparse array/matrix. |
tobsr([blocksize, copy]) | Convert this array/matrix to Block Sparse Row format. |
tocoo([copy]) | Convert this array/matrix to COOrdinate format. |
tocsc([copy]) | Convert this array/matrix to Compressed Sparse Column format. |
tocsr([copy]) | Convert this array/matrix to Compressed Sparse Row format. |
todense([order, out]) | Return a dense representation of this sparse array. |
todia([copy]) | Convert this array/matrix to sparse DIAgonal format. |
todok([copy]) | Convert this array/matrix to Dictionary Of Keys format. |
tolil([copy]) | Convert this array/matrix to List of Lists format. |
trace([offset]) | Returns the sum along diagonals of the sparse array/matrix. |
transpose([axes, copy]) | Reverses the dimensions of the sparse array/matrix. |
update([E, ]**F) | If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] |
values() |