dok_array ā SciPy v1.16.0 Manual (original) (raw)
scipy.sparse.
class scipy.sparse.dok_array(arg1, shape=None, dtype=None, copy=False, *, maxprint=None)[source]#
Dictionary Of Keys based sparse array.
This is an efficient structure for constructing sparse arrays incrementally.
This can be instantiated in several ways:
dok_array(D)
where D is a 2-D ndarray
dok_array(S)
with another sparse array or matrix S (equivalent to S.todok())
dok_array((M,N), [dtype])
create the array with initial shape (M,N) dtype is optional, defaulting to dtype=ādā
Attributes:
dtypedtype
Data type of the array
shape2-tuple
Shape of the array
ndimint
Number of dimensions (this is always 2)
Number of stored values, including explicit zeros.
Number of stored values.
Transpose.
Methods
Notes
Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
- Allows for efficient O(1) access of individual elements.
- Duplicates are not allowed.
- Can be efficiently converted to a coo_array once constructed.
Examples
import numpy as np from scipy.sparse import dok_array S = dok_array((5, 5), dtype=np.float32) for i in range(5): ... for j in range(5): ... S[i, j] = i + j # Update element