scipy.special.elliprf — SciPy v1.15.3 Manual (original) (raw)
scipy.special.elliprf(x, y, z, out=None) = <ufunc 'elliprf'>#
Completely-symmetric elliptic integral of the first kind.
The function RF is defined as [1]
\[R_{\mathrm{F}}(x, y, z) = \frac{1}{2} \int_0^{+\infty} [(t + x) (t + y) (t + z)]^{-1/2} dt\]
Parameters:
x, y, zarray_like
Real or complex input parameters. x, y, or z can be any number in the complex plane cut along the negative real axis, but at most one of them can be zero.
outndarray, optional
Optional output array for the function values
Returns:
Rscalar or ndarray
Value of the integral. If all of x, y, and z are real, the return value is real. Otherwise, the return value is complex.
See also
Degenerate symmetric integral.
Symmetric elliptic integral of the second kind.
Completely-symmetric elliptic integral of the second kind.
Symmetric elliptic integral of the third kind.
Notes
The code implements Carlson’s algorithm based on the duplication theorems and series expansion up to the 7th order (cf.:https://dlmf.nist.gov/19.36.i) and the AGM algorithm for the complete integral. [2]
Added in version 1.8.0.
References
Examples
Basic homogeneity property:
import numpy as np from scipy.special import elliprf
x = 1.2 + 3.4j y = 5. z = 6. scale = 0.3 + 0.4j elliprf(scalex, scaley, scale*z) (0.5328051227278146-0.4008623567957094j)
elliprf(x, y, z)/np.sqrt(scale) (0.5328051227278147-0.4008623567957095j)
All three arguments coincide:
x = 1.2 + 3.4j elliprf(x, x, x) (0.42991731206146316-0.30417298187455954j)
1/np.sqrt(x) (0.4299173120614631-0.30417298187455954j)
The so-called “first lemniscate constant”:
elliprf(0, 1, 2) 1.3110287771460598
from scipy.special import gamma gamma(0.25)*2/(4np.sqrt(2*np.pi)) 1.3110287771460598