scipy.special.eval_jacobi — SciPy v1.15.2 Manual (original) (raw)
scipy.special.eval_jacobi(n, alpha, beta, x, out=None) = <ufunc 'eval_jacobi'>#
Evaluate Jacobi polynomial at a point.
The Jacobi polynomials can be defined via the Gauss hypergeometric function \({}_2F_1\) as
\[P_n^{(\alpha, \beta)}(x) = \frac{(\alpha + 1)_n}{\Gamma(n + 1)} {}_2F_1(-n, 1 + \alpha + \beta + n; \alpha + 1; (1 - z)/2)\]
where \((\cdot)_n\) is the Pochhammer symbol; see poch. When\(n\) is an integer the result is a polynomial of degree\(n\). See 22.5.42 in [AS] for details.
Parameters:
narray_like
Degree of the polynomial. If not an integer the result is determined via the relation to the Gauss hypergeometric function.
alphaarray_like
Parameter
betaarray_like
Parameter
xarray_like
Points at which to evaluate the polynomial
outndarray, optional
Optional output array for the function values
Returns:
Pscalar or ndarray
Values of the Jacobi polynomial
See also
roots and quadrature weights of Jacobi polynomials
Jacobi polynomial object
Gauss hypergeometric function
References
[AS]
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.