scipy.special.expn — SciPy v1.15.2 Manual (original) (raw)
scipy.special.expn(n, x, out=None) = <ufunc 'expn'>#
Generalized exponential integral En.
For integer \(n \geq 0\) and real \(x \geq 0\) the generalized exponential integral is defined as [dlmf]
\[E_n(x) = x^{n - 1} \int_x^\infty \frac{e^{-t}}{t^n} dt.\]
Parameters:
narray_like
Non-negative integers
xarray_like
Real argument
outndarray, optional
Optional output array for the function results
Returns:
scalar or ndarray
Values of the generalized exponential integral
See also
special case of \(E_n\) for \(n = 1\)
related to \(E_n\) when \(n = 1\)
References
Examples
import numpy as np import scipy.special as sc
Its domain is nonnegative n and x.
sc.expn(-1, 1.0), sc.expn(1, -1.0) (nan, nan)
It has a pole at x = 0
for n = 1, 2
; for larger n
it is equal to 1 / (n - 1)
.
sc.expn([0, 1, 2, 3, 4], 0) array([ inf, inf, 1. , 0.5 , 0.33333333])
For n equal to 0 it reduces to exp(-x) / x
.
x = np.array([1, 2, 3, 4]) sc.expn(0, x) array([0.36787944, 0.06766764, 0.01659569, 0.00457891]) np.exp(-x) / x array([0.36787944, 0.06766764, 0.01659569, 0.00457891])
For n equal to 1 it reduces to exp1.
sc.expn(1, x) array([0.21938393, 0.04890051, 0.01304838, 0.00377935]) sc.exp1(x) array([0.21938393, 0.04890051, 0.01304838, 0.00377935])