scipy.special.gammainc — SciPy v1.15.3 Manual (original) (raw)
scipy.special.gammainc(a, x, out=None) = <ufunc 'gammainc'>#
Regularized lower incomplete gamma function.
It is defined as
\[P(a, x) = \frac{1}{\Gamma(a)} \int_0^x t^{a - 1}e^{-t} dt\]
for \(a > 0\) and \(x \geq 0\). See [dlmf] for details.
Parameters:
aarray_like
Positive parameter
xarray_like
Nonnegative argument
outndarray, optional
Optional output array for the function values
Returns:
scalar or ndarray
Values of the lower incomplete gamma function
See also
regularized upper incomplete gamma function
inverse of the regularized lower incomplete gamma function
inverse of the regularized upper incomplete gamma function
Notes
The function satisfies the relation gammainc(a, x) + gammaincc(a, x) = 1
where gammaincc is the regularized upper incomplete gamma function.
The implementation largely follows that of [boost].
References
Examples
import scipy.special as sc
It is the CDF of the gamma distribution, so it starts at 0 and monotonically increases to 1.
sc.gammainc(0.5, [0, 1, 10, 100]) array([0. , 0.84270079, 0.99999226, 1. ])
It is equal to one minus the upper incomplete gamma function.
a, x = 0.5, 0.4 sc.gammainc(a, x) 0.6289066304773024 1 - sc.gammaincc(a, x) 0.6289066304773024