gegenbauer — SciPy v1.15.3 Manual (original) (raw)
scipy.special.
scipy.special.gegenbauer(n, alpha, monic=False)[source]#
Gegenbauer (ultraspherical) polynomial.
Defined to be the solution of
\[(1 - x^2)\frac{d^2}{dx^2}C_n^{(\alpha)} - (2\alpha + 1)x\frac{d}{dx}C_n^{(\alpha)} + n(n + 2\alpha)C_n^{(\alpha)} = 0\]
for \(\alpha > -1/2\); \(C_n^{(\alpha)}\) is a polynomial of degree \(n\).
Parameters:
nint
Degree of the polynomial.
alphafloat
Parameter, must be greater than -0.5.
monicbool, optional
If True, scale the leading coefficient to be 1. Default is_False_.
Returns:
Corthopoly1d
Gegenbauer polynomial.
Notes
The polynomials \(C_n^{(\alpha)}\) are orthogonal over\([-1,1]\) with weight function \((1 - x^2)^{(\alpha - 1/2)}\).
Examples
import numpy as np from scipy import special import matplotlib.pyplot as plt
We can initialize a variable p
as a Gegenbauer polynomial using thegegenbauer function and evaluate at a point x = 1
.
p = special.gegenbauer(3, 0.5, monic=False) p poly1d([ 2.5, 0. , -1.5, 0. ]) p(1) 1.0
To evaluate p
at various points x
in the interval (-3, 3)
, simply pass an array x
to p
as follows:
x = np.linspace(-3, 3, 400) y = p(x)
We can then visualize x, y
using matplotlib.pyplot.
fig, ax = plt.subplots() ax.plot(x, y) ax.set_title("Gegenbauer (ultraspherical) polynomial of degree 3") ax.set_xlabel("x") ax.set_ylabel("G_3(x)") plt.show()