scipy.special.hyp1f1 — SciPy v1.15.2 Manual (original) (raw)
scipy.special.hyp1f1(a, b, x, out=None) = <ufunc 'hyp1f1'>#
Confluent hypergeometric function 1F1.
The confluent hypergeometric function is defined by the series
\[{}_1F_1(a; b; x) = \sum_{k = 0}^\infty \frac{(a)_k}{(b)_k k!} x^k.\]
See [dlmf] for more details. Here \((\cdot)_k\) is the Pochhammer symbol; see poch.
Parameters:
a, barray_like
Real parameters
xarray_like
Real or complex argument
outndarray, optional
Optional output array for the function results
Returns:
scalar or ndarray
Values of the confluent hypergeometric function
See also
another confluent hypergeometric function
confluent hypergeometric limit function
Gaussian hypergeometric function
Notes
For real values, this function uses the hyp1f1
routine from the C++ Boost library [2], for complex values a C translation of the specfun Fortran library [3].
References
[3]
Zhang, Jin, “Computation of Special Functions”, John Wiley and Sons, Inc, 1996.
Examples
import numpy as np import scipy.special as sc
It is one when x is zero:
sc.hyp1f1(0.5, 0.5, 0) 1.0
It is singular when b is a nonpositive integer.
sc.hyp1f1(0.5, -1, 0) inf
It is a polynomial when a is a nonpositive integer.
a, b, x = -1, 0.5, np.array([1.0, 2.0, 3.0, 4.0]) sc.hyp1f1(a, b, x) array([-1., -3., -5., -7.]) 1 + (a / b) * x array([-1., -3., -5., -7.])
It reduces to the exponential function when a = b
.
sc.hyp1f1(2, 2, [1, 2, 3, 4]) array([ 2.71828183, 7.3890561 , 20.08553692, 54.59815003]) np.exp([1, 2, 3, 4]) array([ 2.71828183, 7.3890561 , 20.08553692, 54.59815003])