scipy.special.it2struve0 — SciPy v1.15.2 Manual (original) (raw)
scipy.special.it2struve0(x, out=None) = <ufunc 'it2struve0'>#
Integral related to the Struve function of order 0.
Returns the integral,
\[\int_x^\infty \frac{H_0(t)}{t}\,dt\]
where \(H_0\) is the Struve function of order 0.
Parameters:
xarray_like
Lower limit of integration.
outndarray, optional
Optional output array for the function values
Returns:
Iscalar or ndarray
The value of the integral.
Notes
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].
References
Examples
Evaluate the function at one point.
import numpy as np from scipy.special import it2struve0 it2struve0(1.) 0.9571973506383524
Evaluate the function at several points by supplying an array for x.
points = np.array([1., 2., 3.5]) it2struve0(points) array([0.95719735, 0.46909296, 0.10366042])
Plot the function from -10 to 10.
import matplotlib.pyplot as plt x = np.linspace(-10., 10., 1000) it2struve0_values = it2struve0(x) fig, ax = plt.subplots() ax.plot(x, it2struve0_values) ax.set_xlabel(r'$x$') ax.set_ylabel(r'$\int_x^{\infty}\frac{H_0(t)}{t},dt$') plt.show()