scipy.special.iti0k0 — SciPy v1.15.3 Manual (original) (raw)
scipy.special.iti0k0(x, out=None) = <ufunc 'iti0k0'>#
Integrals of modified Bessel functions of order 0.
Computes the integrals
\[\begin{split}\int_0^x I_0(t) dt \\ \int_0^x K_0(t) dt.\end{split}\]
For more on \(I_0\) and \(K_0\) see i0 and k0.
Parameters:
xarray_like
Values at which to evaluate the integrals.
outtuple of ndarrays, optional
Optional output arrays for the function results.
Returns:
ii0scalar or ndarray
The integral for i0
ik0scalar or ndarray
The integral for k0
References
[1]
S. Zhang and J.M. Jin, “Computation of Special Functions”, Wiley 1996
Examples
Evaluate the functions at one point.
from scipy.special import iti0k0 int_i, int_k = iti0k0(1.) int_i, int_k (1.0865210970235892, 1.2425098486237771)
Evaluate the functions at several points.
import numpy as np points = np.array([0., 1.5, 3.]) int_i, int_k = iti0k0(points) int_i, int_k (array([0. , 1.80606937, 6.16096149]), array([0. , 1.39458246, 1.53994809]))
Plot the functions from 0 to 5.
import matplotlib.pyplot as plt fig, ax = plt.subplots() x = np.linspace(0., 5., 1000) int_i, int_k = iti0k0(x) ax.plot(x, int_i, label=r"$\int_0^x I_0(t),dt$") ax.plot(x, int_k, label=r"$\int_0^x K_0(t),dt$") ax.legend() plt.show()