mathieu_even_coef — SciPy v1.15.2 Manual (original) (raw)
scipy.special.
scipy.special.mathieu_even_coef(m, q)[source]#
Fourier coefficients for even Mathieu and modified Mathieu functions.
The Fourier series of the even solutions of the Mathieu differential equation are of the form
\[\mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz\]
\[\mathrm{ce}_{2n+1}(z, q) = \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z\]
This function returns the coefficients \(A_{(2n)}^{(2k)}\) for even input m=2n, and the coefficients \(A_{(2n+1)}^{(2k+1)}\) for odd input m=2n+1.
Parameters:
mint
Order of Mathieu functions. Must be non-negative.
qfloat (>=0)
Parameter of Mathieu functions. Must be non-negative.
Returns:
Akndarray
Even or odd Fourier coefficients, corresponding to even or odd m.
References