scipy.special.nctdtr — SciPy v1.15.2 Manual (original) (raw)
scipy.special.nctdtr(df, nc, t, out=None) = <ufunc 'nctdtr'>#
Cumulative distribution function of the non-central t distribution.
Parameters:
dfarray_like
Degrees of freedom of the distribution. Should be in range (0, inf).
ncarray_like
Noncentrality parameter.
tarray_like
Quantiles, i.e., the upper limit of integration.
outndarray, optional
Optional output array for the function results
Returns:
cdfscalar or ndarray
The calculated CDF. If all inputs are scalar, the return will be a float. Otherwise, it will be an array.
See also
Inverse CDF (iCDF) of the non-central t distribution.
Calculate degrees of freedom, given CDF and iCDF values.
Calculate non-centrality parameter, given CDF iCDF values.
Notes
This function calculates the CDF of the non-central t distribution using the Boost Math C++ library [1].
Note that the argument order of nctdtr is different from that of the similar cdf
method of scipy.stats.nct: t is the last parameter of nctdtr but the first parameter of scipy.stats.nct.cdf
.
References
Examples
import numpy as np from scipy import special from scipy import stats import matplotlib.pyplot as plt
Plot the CDF of the non-central t distribution, for nc=0. Compare with the t-distribution from scipy.stats:
x = np.linspace(-5, 5, num=500) df = 3 nct_stats = stats.t.cdf(x, df) nct_special = special.nctdtr(df, 0, x)
fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, nct_stats, 'b-', lw=3) ax.plot(x, nct_special, 'r-') plt.show()