scipy.special.rel_entr — SciPy v1.15.2 Manual (original) (raw)
scipy.special.rel_entr(x, y, out=None) = <ufunc 'rel_entr'>#
Elementwise function for computing relative entropy.
\[\begin{split}\mathrm{rel\_entr}(x, y) = \begin{cases} x \log(x / y) & x > 0, y > 0 \\ 0 & x = 0, y \ge 0 \\ \infty & \text{otherwise} \end{cases}\end{split}\]
Parameters:
x, yarray_like
Input arrays
outndarray, optional
Optional output array for the function results
Returns:
scalar or ndarray
Relative entropy of the inputs
Notes
Added in version 0.15.0.
This function is jointly convex in x and y.
The origin of this function is in convex programming; see[1]. Given two discrete probability distributions \(p_1, \ldots, p_n\) and \(q_1, \ldots, q_n\), the definition of relative entropy in the context of information theory is
\[\sum_{i = 1}^n \mathrm{rel\_entr}(p_i, q_i).\]
To compute the latter quantity, use scipy.stats.entropy.
See [2] for details.
References