roots_legendre — SciPy v1.15.3 Manual (original) (raw)
scipy.special.
scipy.special.roots_legendre(n, mu=False)[source]#
Gauss-Legendre quadrature.
Compute the sample points and weights for Gauss-Legendre quadrature [GL]. The sample points are the roots of the nth degree Legendre polynomial \(P_n(x)\). These sample points and weights correctly integrate polynomials of degree \(2n - 1\)or less over the interval \([-1, 1]\) with weight function\(w(x) = 1\). See 2.2.10 in [AS] for more details.
Parameters:
nint
quadrature order
mubool, optional
If True, return the sum of the weights, optional.
Returns:
xndarray
Sample points
wndarray
Weights
mufloat
Sum of the weights
References
[AS]
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.
Examples
import numpy as np from scipy.special import roots_legendre, eval_legendre roots, weights = roots_legendre(9)
roots
holds the roots, and weights
holds the weights for Gauss-Legendre quadrature.
roots array([-0.96816024, -0.83603111, -0.61337143, -0.32425342, 0. , 0.32425342, 0.61337143, 0.83603111, 0.96816024]) weights array([0.08127439, 0.18064816, 0.2606107 , 0.31234708, 0.33023936, 0.31234708, 0.2606107 , 0.18064816, 0.08127439])
Verify that we have the roots by evaluating the degree 9 Legendre polynomial at roots
. All the values are approximately zero:
eval_legendre(9, roots) array([-8.88178420e-16, -2.22044605e-16, 1.11022302e-16, 1.11022302e-16, 0.00000000e+00, -5.55111512e-17, -1.94289029e-16, 1.38777878e-16, -8.32667268e-17])
Here we’ll show how the above values can be used to estimate the integral from 1 to 2 of f(t) = t + 1/t with Gauss-Legendre quadrature [GL]. First define the function and the integration limits.
def f(t): ... return t + 1/t ... a = 1 b = 2
We’ll use integral(f(t), t=a, t=b)
to denote the definite integral of f from t=a to t=b. The sample points in roots
are from the interval [-1, 1], so we’ll rewrite the integral with the simple change of variable:
x = 2/(b - a) * t - (a + b)/(b - a)
with inverse:
t = (b - a)/2 * x + (a + b)/2
Then:
integral(f(t), a, b) = (b - a)/2 * integral(f((b-a)/2*x + (a+b)/2), x=-1, x=1)
We can approximate the latter integral with the values returned by roots_legendre.
Map the roots computed above from [-1, 1] to [a, b].
t = (b - a)/2 * roots + (a + b)/2
Approximate the integral as the weighted sum of the function values.
(b - a)/2 * f(t).dot(weights) 2.1931471805599276
Compare that to the exact result, which is 3/2 + log(2):
1.5 + np.log(2) 2.1931471805599454