scipy.special.sici — SciPy v1.15.2 Manual (original) (raw)
scipy.special.sici(x, out=None) = <ufunc 'sici'>#
Sine and cosine integrals.
The sine integral is
\[\int_0^x \frac{\sin{t}}{t}dt\]
and the cosine integral is
\[\gamma + \log(x) + \int_0^x \frac{\cos{t} - 1}{t}dt\]
where \(\gamma\) is Euler’s constant and \(\log\) is the principal branch of the logarithm [1].
Parameters:
xarray_like
Real or complex points at which to compute the sine and cosine integrals.
outtuple of ndarray, optional
Optional output arrays for the function results
Returns:
siscalar or ndarray
Sine integral at x
ciscalar or ndarray
Cosine integral at x
See also
Hyperbolic sine and cosine integrals.
Exponential integral E1.
Exponential integral Ei.
Notes
For real arguments with x < 0
, ci
is the real part of the cosine integral. For such points ci(x)
and ci(x + 0j)
differ by a factor of 1j*pi
.
For real arguments the function is computed by calling Cephes’[2] sici routine. For complex arguments the algorithm is based on Mpmath’s [3] si and ci routines.
References
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. (See Section 5.2.)
[3]
Fredrik Johansson and others. “mpmath: a Python library for arbitrary-precision floating-point arithmetic” (Version 0.19) http://mpmath.org/
Examples
import numpy as np import matplotlib.pyplot as plt from scipy.special import sici, exp1
sici accepts real or complex input:
sici(2.5) (1.7785201734438267, 0.2858711963653835) sici(2.5 + 3j) ((4.505735874563953+0.06863305018999577j), (0.0793644206906966-2.935510262937543j))
For z in the right half plane, the sine and cosine integrals are related to the exponential integral E1 (implemented in SciPy asscipy.special.exp1) by
- Si(z) = (E1(i*z) - E1(-i*z))/2i + pi/2
- Ci(z) = -(E1(i*z) + E1(-i*z))/2
See [1] (equations 5.2.21 and 5.2.23).
We can verify these relations:
z = 2 - 3j sici(z) ((4.54751388956229-1.3991965806460565j), (1.408292501520851+2.9836177420296055j))
(exp1(1jz) - exp1(-1jz))/2j + np.pi/2 # Same as sine integral (4.54751388956229-1.3991965806460565j)
-(exp1(1jz) + exp1(-1jz))/2 # Same as cosine integral (1.408292501520851+2.9836177420296055j)
Plot the functions evaluated on the real axis; the dotted horizontal lines are at pi/2 and -pi/2:
x = np.linspace(-16, 16, 150) si, ci = sici(x)
fig, ax = plt.subplots() ax.plot(x, si, label='Si(x)') ax.plot(x, ci, '--', label='Ci(x)') ax.legend(shadow=True, framealpha=1, loc='upper left') ax.set_xlabel('x') ax.set_title('Sine and Cosine Integrals') ax.axhline(np.pi/2, linestyle=':', alpha=0.5, color='k') ax.axhline(-np.pi/2, linestyle=':', alpha=0.5, color='k') ax.grid(True) plt.show()