scipy.special.wright_bessel — SciPy v1.15.2 Manual (original) (raw)
scipy.special.wright_bessel(a, b, x, out=None) = <ufunc 'wright_bessel'>#
Wright’s generalized Bessel function.
Wright’s generalized Bessel function is an entire function and defined as
\[\Phi(a, b; x) = \sum_{k=0}^\infty \frac{x^k}{k! \Gamma(a k + b)}\]
See Also [1].
Parameters:
aarray_like of float
a >= 0
barray_like of float
b >= 0
xarray_like of float
x >= 0
outndarray, optional
Optional output array for the function results
Returns:
scalar or ndarray
Value of the Wright’s generalized Bessel function
Notes
Due to the complexity of the function with its three parameters, only non-negative arguments are implemented.
Added in version 1.7.0.
References
Examples
from scipy.special import wright_bessel a, b, x = 1.5, 1.1, 2.5 wright_bessel(a, b-1, x) 4.5314465939443025
Now, let us verify the relation
\[\Phi(a, b-1; x) = a x \Phi(a, b+a; x) + (b-1) \Phi(a, b; x)\]
a * x * wright_bessel(a, b+a, x) + (b-1) * wright_bessel(a, b, x) 4.5314465939443025