scipy.special.yve — SciPy v1.15.3 Manual (original) (raw)
scipy.special.yve(v, z, out=None) = <ufunc 'yve'>#
Exponentially scaled Bessel function of the second kind of real order.
Returns the exponentially scaled Bessel function of the second kind of real order v at complex z:
yve(v, z) = yv(v, z) * exp(-abs(z.imag))
Parameters:
varray_like
Order (float).
zarray_like
Argument (float or complex).
outndarray, optional
Optional output array for the function results
Returns:
Yscalar or ndarray
Value of the exponentially scaled Bessel function.
See also
Unscaled Bessel function of the second kind of real order.
Notes
For positive v values, the computation is carried out using the AMOS [1] zbesy routine, which exploits the connection to the Hankel Bessel functions \(H_v^{(1)}\) and \(H_v^{(2)}\),
\[Y_v(z) = \frac{1}{2\imath} (H_v^{(1)} - H_v^{(2)}).\]
For negative v values the formula,
\[Y_{-v}(z) = Y_v(z) \cos(\pi v) + J_v(z) \sin(\pi v)\]
is used, where \(J_v(z)\) is the Bessel function of the first kind, computed using the AMOS routine zbesj. Note that the second term is exactly zero for integer v; to improve accuracy the second term is explicitly omitted for v values such that v = floor(v).
Exponentially scaled Bessel functions are useful for large z: for these, the unscaled Bessel functions can easily under-or overflow.
References
[1]
Donald E. Amos, “AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order”,http://netlib.org/amos/
Examples
Compare the output of yv and yve for large complex arguments for _z_by computing their values for order v=1
at z=1000j
. We see thatyv returns nan but yve returns a finite number:
import numpy as np from scipy.special import yv, yve v = 1 z = 1000j yv(v, z), yve(v, z) ((nan+nanj), (-0.012610930256928629+7.721967686709076e-19j))
For real arguments for z, yve returns the same as yv up to floating point errors.
v, z = 1, 1000 yv(v, z), yve(v, z) (-0.02478433129235178, -0.02478433129235179)
The function can be evaluated for several orders at the same time by providing a list or NumPy array for v:
yve([1, 2, 3], 1j) array([-0.20791042+0.14096627j, 0.38053618-0.04993878j, 0.00815531-1.66311097j])
In the same way, the function can be evaluated at several points in one call by providing a list or NumPy array for z:
yve(1, np.array([1j, 2j, 3j])) array([-0.20791042+0.14096627j, -0.21526929+0.01205044j, -0.19682671+0.00127278j])
It is also possible to evaluate several orders at several points at the same time by providing arrays for v and z with broadcasting compatible shapes. Compute yve for two different orders_v_ and three points z resulting in a 2x3 array.
v = np.array([[1], [2]]) z = np.array([3j, 4j, 5j]) v.shape, z.shape ((2, 1), (3,))
yve(v, z) array([[-1.96826713e-01+1.27277544e-03j, -1.78750840e-01+1.45558819e-04j, -1.63972267e-01+1.73494110e-05j], [1.94960056e-03-1.11782545e-01j, 2.02902325e-04-1.17626501e-01j, 2.27727687e-05-1.17951906e-01j]])