yvp — SciPy v1.15.2 Manual (original) (raw)

scipy.special.

scipy.special.yvp(v, z, n=1)[source]#

Compute derivatives of Bessel functions of the second kind.

Compute the nth derivative of the Bessel function Yv with respect to z.

Parameters:

varray_like of float

Order of Bessel function

zcomplex

Argument at which to evaluate the derivative

nint, default 1

Order of derivative. For 0 returns the BEssel function yv

Returns:

scalar or ndarray

nth derivative of the Bessel function.

See also

yv

Bessel functions of the second kind

Notes

The derivative is computed using the relation DLFM 10.6.7 [2].

References

Examples

Compute the Bessel function of the second kind of order 0 and its first two derivatives at 1.

from scipy.special import yvp yvp(0, 1, 0), yvp(0, 1, 1), yvp(0, 1, 2) (0.088256964215677, 0.7812128213002889, -0.8694697855159659)

Compute the first derivative of the Bessel function of the second kind for several orders at 1 by providing an array for v.

yvp([0, 1, 2], 1, 1) array([0.78121282, 0.86946979, 2.52015239])

Compute the first derivative of the Bessel function of the second kind of order 0 at several points by providing an array for z.

import numpy as np points = np.array([0.5, 1.5, 3.]) yvp(0, points, 1) array([ 1.47147239, 0.41230863, -0.32467442])

Plot the Bessel function of the second kind of order 1 and its first three derivatives.

import matplotlib.pyplot as plt x = np.linspace(0, 5, 1000) x[0] += 1e-15 fig, ax = plt.subplots() ax.plot(x, yvp(1, x, 0), label=r"$Y_1$") ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$") ax.plot(x, yvp(1, x, 2), label=r"$Y_1''$") ax.plot(x, yvp(1, x, 3), label=r"$Y_1'''$") ax.set_ylim(-10, 10) plt.legend() plt.show()

../../_images/scipy-special-yvp-1.png