proportion_ci — SciPy v1.15.3 Manual (original) (raw)
scipy.stats._result_classes.BinomTestResult.
BinomTestResult.proportion_ci(confidence_level=0.95, method='exact')[source]#
Compute the confidence interval for statistic
.
Parameters:
confidence_levelfloat, optional
Confidence level for the computed confidence interval of the estimated proportion. Default is 0.95.
method{‘exact’, ‘wilson’, ‘wilsoncc’}, optional
Selects the method used to compute the confidence interval for the estimate of the proportion:
‘exact’ :
Use the Clopper-Pearson exact method [1].
‘wilson’ :
Wilson’s method, without continuity correction ([2], [3]).
‘wilsoncc’ :
Wilson’s method, with continuity correction ([2], [3]).
Default is 'exact'
.
Returns:
ciConfidenceInterval
object
The object has attributes low
and high
that hold the lower and upper bounds of the confidence interval.
References
[1]
C. J. Clopper and E. S. Pearson, The use of confidence or fiducial limits illustrated in the case of the binomial, Biometrika, Vol. 26, No. 4, pp 404-413 (Dec. 1934).
E. B. Wilson, Probable inference, the law of succession, and statistical inference, J. Amer. Stat. Assoc., 22, pp 209-212 (1927).
Robert G. Newcombe, Two-sided confidence intervals for the single proportion: comparison of seven methods, Statistics in Medicine, 17, pp 857-872 (1998).
Examples
from scipy.stats import binomtest result = binomtest(k=7, n=50, p=0.1) result.statistic 0.14 result.proportion_ci() ConfidenceInterval(low=0.05819170033997342, high=0.26739600249700846)