scipy.stats.bernoulli — SciPy v1.15.2 Manual (original) (raw)
scipy.stats.bernoulli = <scipy.stats._discrete_distns.bernoulli_gen object>[source]#
A Bernoulli discrete random variable.
As an instance of the rv_discrete class, bernoulli object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability mass function for bernoulli is:
\[\begin{split}f(k) = \begin{cases}1-p &\text{if } k = 0\\ p &\text{if } k = 1\end{cases}\end{split}\]
for \(k\) in \(\{0, 1\}\), \(0 \leq p \leq 1\)
bernoulli takes \(p\) as shape parameter, where \(p\) is the probability of a single success and \(1-p\) is the probability of a single failure.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, bernoulli.pmf(k, p, loc)
is identically equivalent to bernoulli.pmf(k - loc, p)
.
Examples
import numpy as np from scipy.stats import bernoulli import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
p = 0.3 mean, var, skew, kurt = bernoulli.stats(p, moments='mvsk')
Display the probability mass function (pmf
):
x = np.arange(bernoulli.ppf(0.01, p), ... bernoulli.ppf(0.99, p)) ax.plot(x, bernoulli.pmf(x, p), 'bo', ms=8, label='bernoulli pmf') ax.vlines(x, 0, bernoulli.pmf(x, p), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf
:
rv = bernoulli(p) ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') ax.legend(loc='best', frameon=False) plt.show()
Check accuracy of cdf
and ppf
:
prob = bernoulli.cdf(x, p) np.allclose(x, bernoulli.ppf(prob, p)) True
Generate random numbers:
r = bernoulli.rvs(p, size=1000)
Methods
rvs(p, loc=0, size=1, random_state=None) | Random variates. |
---|---|
pmf(k, p, loc=0) | Probability mass function. |
logpmf(k, p, loc=0) | Log of the probability mass function. |
cdf(k, p, loc=0) | Cumulative distribution function. |
logcdf(k, p, loc=0) | Log of the cumulative distribution function. |
sf(k, p, loc=0) | Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). |
logsf(k, p, loc=0) | Log of the survival function. |
ppf(q, p, loc=0) | Percent point function (inverse of cdf — percentiles). |
isf(q, p, loc=0) | Inverse survival function (inverse of sf). |
stats(p, loc=0, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(p, loc=0) | (Differential) entropy of the RV. |
expect(func, args=(p,), loc=0, lb=None, ub=None, conditional=False) | Expected value of a function (of one argument) with respect to the distribution. |
median(p, loc=0) | Median of the distribution. |
mean(p, loc=0) | Mean of the distribution. |
var(p, loc=0) | Variance of the distribution. |
std(p, loc=0) | Standard deviation of the distribution. |
interval(confidence, p, loc=0) | Confidence interval with equal areas around the median. |