scipy.stats.boltzmann — SciPy v1.15.3 Manual (original) (raw)
scipy.stats.boltzmann = <scipy.stats._discrete_distns.boltzmann_gen object>[source]#
A Boltzmann (Truncated Discrete Exponential) random variable.
As an instance of the rv_discrete class, boltzmann object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability mass function for boltzmann is:
\[f(k) = (1-\exp(-\lambda)) \exp(-\lambda k) / (1-\exp(-\lambda N))\]
for \(k = 0,..., N-1\).
boltzmann takes \(\lambda > 0\) and \(N > 0\) as shape parameters.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, boltzmann.pmf(k, lambda_, N, loc)
is identically equivalent to boltzmann.pmf(k - loc, lambda_, N)
.
Examples
import numpy as np from scipy.stats import boltzmann import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
lambda_, N = 1.4, 19 mean, var, skew, kurt = boltzmann.stats(lambda_, N, moments='mvsk')
Display the probability mass function (pmf
):
x = np.arange(boltzmann.ppf(0.01, lambda_, N), ... boltzmann.ppf(0.99, lambda_, N)) ax.plot(x, boltzmann.pmf(x, lambda_, N), 'bo', ms=8, label='boltzmann pmf') ax.vlines(x, 0, boltzmann.pmf(x, lambda_, N), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf
:
rv = boltzmann(lambda_, N) ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') ax.legend(loc='best', frameon=False) plt.show()
Check accuracy of cdf
and ppf
:
prob = boltzmann.cdf(x, lambda_, N) np.allclose(x, boltzmann.ppf(prob, lambda_, N)) True
Generate random numbers:
r = boltzmann.rvs(lambda_, N, size=1000)
Methods
rvs(lambda_, N, loc=0, size=1, random_state=None) | Random variates. |
---|---|
pmf(k, lambda_, N, loc=0) | Probability mass function. |
logpmf(k, lambda_, N, loc=0) | Log of the probability mass function. |
cdf(k, lambda_, N, loc=0) | Cumulative distribution function. |
logcdf(k, lambda_, N, loc=0) | Log of the cumulative distribution function. |
sf(k, lambda_, N, loc=0) | Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). |
logsf(k, lambda_, N, loc=0) | Log of the survival function. |
ppf(q, lambda_, N, loc=0) | Percent point function (inverse of cdf — percentiles). |
isf(q, lambda_, N, loc=0) | Inverse survival function (inverse of sf). |
stats(lambda_, N, loc=0, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(lambda_, N, loc=0) | (Differential) entropy of the RV. |
expect(func, args=(lambda_, N), loc=0, lb=None, ub=None, conditional=False) | Expected value of a function (of one argument) with respect to the distribution. |
median(lambda_, N, loc=0) | Median of the distribution. |
mean(lambda_, N, loc=0) | Mean of the distribution. |
var(lambda_, N, loc=0) | Variance of the distribution. |
std(lambda_, N, loc=0) | Standard deviation of the distribution. |
interval(confidence, lambda_, N, loc=0) | Confidence interval with equal areas around the median. |