describe — SciPy v1.15.2 Manual (original) (raw)
scipy.stats.
scipy.stats.describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate')[source]#
Compute several descriptive statistics of the passed array.
Parameters:
aarray_like
Input data.
axisint or None, optional
Axis along which statistics are calculated. Default is 0. If None, compute over the whole array a.
ddofint, optional
Delta degrees of freedom (only for variance). Default is 1.
biasbool, optional
If False, then the skewness and kurtosis calculations are corrected for statistical bias.
nan_policy{‘propagate’, ‘raise’, ‘omit’}, optional
Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):
- ‘propagate’: returns nan
- ‘raise’: throws an error
- ‘omit’: performs the calculations ignoring nan values
Returns:
nobsint or ndarray of ints
Number of observations (length of data along axis). When ‘omit’ is chosen as nan_policy, the length along each axis slice is counted separately.
minmax: tuple of ndarrays or floats
Minimum and maximum value of a along the given axis.
meanndarray or float
Arithmetic mean of a along the given axis.
variancendarray or float
Unbiased variance of a along the given axis; denominator is number of observations minus one.
skewnessndarray or float
Skewness of a along the given axis, based on moment calculations with denominator equal to the number of observations, i.e. no degrees of freedom correction.
kurtosisndarray or float
Kurtosis (Fisher) of a along the given axis. The kurtosis is normalized so that it is zero for the normal distribution. No degrees of freedom are used.
Raises:
ValueError
If size of a is 0.
Examples
import numpy as np from scipy import stats a = np.arange(10) stats.describe(a) DescribeResult(nobs=10, minmax=(0, 9), mean=4.5, variance=9.166666666666666, skewness=0.0, kurtosis=-1.2242424242424244) b = [[1, 2], [3, 4]] stats.describe(b) DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])), mean=array([2., 3.]), variance=array([2., 2.]), skewness=array([0., 0.]), kurtosis=array([-2., -2.]))