scipy.stats.dpareto_lognorm — SciPy v1.15.3 Manual (original) (raw)
scipy.stats.dpareto_lognorm = <scipy.stats._continuous_distns.dpareto_lognorm_gen object>[source]#
A double Pareto lognormal continuous random variable.
As an instance of the rv_continuous class, dpareto_lognorm object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability density function for dpareto_lognorm is:
\[f(x, \mu, \sigma, \alpha, \beta) = \frac{\alpha \beta}{(\alpha + \beta) x} \phi\left( \frac{\log x - \mu}{\sigma} \right) \left( R(y_1) + R(y_2) \right)\]
where \(R(t) = \frac{1 - \Phi(t)}{\phi(t)}\),\(\phi\) and \(\Phi\) are the normal PDF and CDF, respectively,\(y_1 = \alpha \sigma - \frac{\log x - \mu}{\sigma}\), and \(y_2 = \beta \sigma + \frac{\log x - \mu}{\sigma}\)for real numbers \(x\) and \(\mu\), \(\sigma > 0\),\(\alpha > 0\), and \(\beta > 0\) [1].
dpareto_lognorm takesu
as a shape parameter for \(\mu\),s
as a shape parameter for \(\sigma\),a
as a shape parameter for \(\alpha\), andb
as a shape parameter for \(\beta\).
A random variable \(X\) distributed according to the PDF above can be represented as \(X = U \frac{V_1}{V_2}\) where \(U\),\(V_1\), and \(V_2\) are independent, \(U\) is lognormally distributed such that \(\log U \sim N(\mu, \sigma^2)\), and\(V_1\) and \(V_2\) follow Pareto distributions with parameters\(\alpha\) and \(\beta\), respectively [2].
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc
and scale
parameters. Specifically, dpareto_lognorm.pdf(x, u, s, a, b, loc, scale)
is identically equivalent to dpareto_lognorm.pdf(y, u, s, a, b) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
References
[1]
Hajargasht, Gholamreza, and William E. Griffiths. “Pareto-lognormal distributions: Inequality, poverty, and estimation from grouped income data.” Economic Modelling 33 (2013): 593-604.
[2]
Reed, William J., and Murray Jorgensen. “The double Pareto-lognormal distribution - a new parametric model for size distributions.” Communications in Statistics - Theory and Methods 33.8 (2004): 1733-1753.
Examples
import numpy as np from scipy.stats import dpareto_lognorm import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
u, s, a, b = 3, 1.2, 1.5, 2 mean, var, skew, kurt = dpareto_lognorm.stats(u, s, a, b, moments='mvsk')
Display the probability density function (pdf
):
x = np.linspace(dpareto_lognorm.ppf(0.01, u, s, a, b), ... dpareto_lognorm.ppf(0.99, u, s, a, b), 100) ax.plot(x, dpareto_lognorm.pdf(x, u, s, a, b), ... 'r-', lw=5, alpha=0.6, label='dpareto_lognorm pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf
:
rv = dpareto_lognorm(u, s, a, b) ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of cdf
and ppf
:
vals = dpareto_lognorm.ppf([0.001, 0.5, 0.999], u, s, a, b) np.allclose([0.001, 0.5, 0.999], dpareto_lognorm.cdf(vals, u, s, a, b)) True
Generate random numbers:
r = dpareto_lognorm.rvs(u, s, a, b, size=1000)
And compare the histogram:
ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) ax.set_xlim([x[0], x[-1]]) ax.legend(loc='best', frameon=False) plt.show()
Methods
rvs(u, s, a, b, loc=0, scale=1, size=1, random_state=None) | Random variates. |
---|---|
pdf(x, u, s, a, b, loc=0, scale=1) | Probability density function. |
logpdf(x, u, s, a, b, loc=0, scale=1) | Log of the probability density function. |
cdf(x, u, s, a, b, loc=0, scale=1) | Cumulative distribution function. |
logcdf(x, u, s, a, b, loc=0, scale=1) | Log of the cumulative distribution function. |
sf(x, u, s, a, b, loc=0, scale=1) | Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). |
logsf(x, u, s, a, b, loc=0, scale=1) | Log of the survival function. |
ppf(q, u, s, a, b, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
isf(q, u, s, a, b, loc=0, scale=1) | Inverse survival function (inverse of sf). |
moment(order, u, s, a, b, loc=0, scale=1) | Non-central moment of the specified order. |
stats(u, s, a, b, loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(u, s, a, b, loc=0, scale=1) | (Differential) entropy of the RV. |
fit(data) | Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments. |
expect(func, args=(u, s, a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
median(u, s, a, b, loc=0, scale=1) | Median of the distribution. |
mean(u, s, a, b, loc=0, scale=1) | Mean of the distribution. |
var(u, s, a, b, loc=0, scale=1) | Variance of the distribution. |
std(u, s, a, b, loc=0, scale=1) | Standard deviation of the distribution. |
interval(confidence, u, s, a, b, loc=0, scale=1) | Confidence interval with equal areas around the median. |