exp — SciPy v1.15.2 Manual (original) (raw)
scipy.stats.
scipy.stats.exp(X, /)[source]#
Natural exponential of a random variable
Parameters:
XContinuousDistribution
The random variable \(X\).
Returns:
YContinuousDistribution
A random variable \(Y = \exp(X)\).
Examples
Suppose we have a normally distributed random variable \(X\):
import numpy as np from scipy import stats X = stats.Normal()
We wish to have a lognormally distributed random variable \(Y\), a random variable whose natural logarithm is \(X\). If \(X\) is to be the natural logarithm of \(Y\), then we must take \(Y\) to be the natural exponential of \(X\).
To demonstrate that X
represents the logarithm of Y
, we plot a normalized histogram of the logarithm of observations ofY
against the PDF underlying X
.
import matplotlib.pyplot as plt rng = np.random.default_rng() y = Y.sample(shape=10000, rng=rng) ax = plt.gca() ax.hist(np.log(y), bins=50, density=True) X.plot(ax=ax) plt.legend(('PDF of
X
', 'histogram oflog(y)
')) plt.show()