scipy.stats.fisk — SciPy v1.15.2 Manual (original) (raw)
scipy.stats.fisk = <scipy.stats._continuous_distns.fisk_gen object>[source]#
A Fisk continuous random variable.
The Fisk distribution is also known as the log-logistic distribution.
As an instance of the rv_continuous class, fisk object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability density function for fisk is:
\[f(x, c) = \frac{c x^{c-1}} {(1 + x^c)^2}\]
for \(x >= 0\) and \(c > 0\).
Please note that the above expression can be transformed into the following one, which is also commonly used:
\[f(x, c) = \frac{c x^{-c-1}} {(1 + x^{-c})^2}\]
fisk takes c
as a shape parameter for \(c\).
fisk is a special case of burr or burr12 with d=1
.
Suppose X
is a logistic random variable with location l
and scale s
. Then Y = exp(X)
is a Fisk (log-logistic) random variable with scale = exp(l)
and shape c = 1/s
.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc
and scale
parameters. Specifically, fisk.pdf(x, c, loc, scale)
is identically equivalent to fisk.pdf(y, c) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples
import numpy as np from scipy.stats import fisk import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
c = 3.09 mean, var, skew, kurt = fisk.stats(c, moments='mvsk')
Display the probability density function (pdf
):
x = np.linspace(fisk.ppf(0.01, c), ... fisk.ppf(0.99, c), 100) ax.plot(x, fisk.pdf(x, c), ... 'r-', lw=5, alpha=0.6, label='fisk pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf
:
rv = fisk(c) ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of cdf
and ppf
:
vals = fisk.ppf([0.001, 0.5, 0.999], c) np.allclose([0.001, 0.5, 0.999], fisk.cdf(vals, c)) True
Generate random numbers:
r = fisk.rvs(c, size=1000)
And compare the histogram:
ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) ax.set_xlim([x[0], x[-1]]) ax.legend(loc='best', frameon=False) plt.show()
Methods
rvs(c, loc=0, scale=1, size=1, random_state=None) | Random variates. |
---|---|
pdf(x, c, loc=0, scale=1) | Probability density function. |
logpdf(x, c, loc=0, scale=1) | Log of the probability density function. |
cdf(x, c, loc=0, scale=1) | Cumulative distribution function. |
logcdf(x, c, loc=0, scale=1) | Log of the cumulative distribution function. |
sf(x, c, loc=0, scale=1) | Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). |
logsf(x, c, loc=0, scale=1) | Log of the survival function. |
ppf(q, c, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
isf(q, c, loc=0, scale=1) | Inverse survival function (inverse of sf). |
moment(order, c, loc=0, scale=1) | Non-central moment of the specified order. |
stats(c, loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(c, loc=0, scale=1) | (Differential) entropy of the RV. |
fit(data) | Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments. |
expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
median(c, loc=0, scale=1) | Median of the distribution. |
mean(c, loc=0, scale=1) | Mean of the distribution. |
var(c, loc=0, scale=1) | Variance of the distribution. |
std(c, loc=0, scale=1) | Standard deviation of the distribution. |
interval(confidence, c, loc=0, scale=1) | Confidence interval with equal areas around the median. |