scipy.stats.johnsonsb — SciPy v1.15.2 Manual (original) (raw)

scipy.stats.johnsonsb = <scipy.stats._continuous_distns.johnsonsb_gen object>[source]#

A Johnson SB continuous random variable.

As an instance of the rv_continuous class, johnsonsb object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for johnsonsb is:

\[f(x, a, b) = \frac{b}{x(1-x)} \phi(a + b \log \frac{x}{1-x} )\]

where \(x\), \(a\), and \(b\) are real scalars; \(b > 0\)and \(x \in [0,1]\). \(\phi\) is the pdf of the normal distribution.

johnsonsb takes \(a\) and \(b\) as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, johnsonsb.pdf(x, a, b, loc, scale) is identically equivalent to johnsonsb.pdf(y, a, b) / scale withy = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

import numpy as np from scipy.stats import johnsonsb import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

a, b = 4.32, 3.18 mean, var, skew, kurt = johnsonsb.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

x = np.linspace(johnsonsb.ppf(0.01, a, b), ... johnsonsb.ppf(0.99, a, b), 100) ax.plot(x, johnsonsb.pdf(x, a, b), ... 'r-', lw=5, alpha=0.6, label='johnsonsb pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

rv = johnsonsb(a, b) ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

vals = johnsonsb.ppf([0.001, 0.5, 0.999], a, b) np.allclose([0.001, 0.5, 0.999], johnsonsb.cdf(vals, a, b)) True

Generate random numbers:

r = johnsonsb.rvs(a, b, size=1000)

And compare the histogram:

ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) ax.set_xlim([x[0], x[-1]]) ax.legend(loc='best', frameon=False) plt.show()

../../_images/scipy-stats-johnsonsb-1.png

Methods

rvs(a, b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, b, loc=0, scale=1) Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf — percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(order, a, b, loc=0, scale=1) Non-central moment of the specified order.
stats(a, b, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data) Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution.
median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(confidence, a, b, loc=0, scale=1) Confidence interval with equal areas around the median.