scipy.stats.kappa3 — SciPy v1.15.2 Manual (original) (raw)

scipy.stats.kappa3 = <scipy.stats._continuous_distns.kappa3_gen object>[source]#

Kappa 3 parameter distribution.

As an instance of the rv_continuous class, kappa3 object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for kappa3 is:

\[f(x, a) = a (a + x^a)^{-(a + 1)/a}\]

for \(x > 0\) and \(a > 0\).

kappa3 takes a as a shape parameter for \(a\).

References

P.W. Mielke and E.S. Johnson, “Three-Parameter Kappa Distribution Maximum Likelihood and Likelihood Ratio Tests”, Methods in Weather Research, 701-707, (September, 1973),DOI:10.1175/1520-0493(1973)101<0701:TKDMLE>2.3.CO;2

B. Kumphon, “Maximum Entropy and Maximum Likelihood Estimation for the Three-Parameter Kappa Distribution”, Open Journal of Statistics, vol 2, 415-419 (2012), DOI:10.4236/ojs.2012.24050

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, kappa3.pdf(x, a, loc, scale) is identically equivalent to kappa3.pdf(y, a) / scale withy = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

import numpy as np from scipy.stats import kappa3 import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

a = 1 mean, var, skew, kurt = kappa3.stats(a, moments='mvsk')

Display the probability density function (pdf):

x = np.linspace(kappa3.ppf(0.01, a), ... kappa3.ppf(0.99, a), 100) ax.plot(x, kappa3.pdf(x, a), ... 'r-', lw=5, alpha=0.6, label='kappa3 pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

rv = kappa3(a) ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

vals = kappa3.ppf([0.001, 0.5, 0.999], a) np.allclose([0.001, 0.5, 0.999], kappa3.cdf(vals, a)) True

Generate random numbers:

r = kappa3.rvs(a, size=1000)

And compare the histogram:

ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) ax.set_xlim([x[0], x[-1]]) ax.legend(loc='best', frameon=False) plt.show()

../../_images/scipy-stats-kappa3-1.png

Methods

rvs(a, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, loc=0, scale=1) Probability density function.
logpdf(x, a, loc=0, scale=1) Log of the probability density function.
cdf(x, a, loc=0, scale=1) Cumulative distribution function.
logcdf(x, a, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, a, loc=0, scale=1) Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).
logsf(x, a, loc=0, scale=1) Log of the survival function.
ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf — percentiles).
isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(order, a, loc=0, scale=1) Non-central moment of the specified order.
stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(a, loc=0, scale=1) (Differential) entropy of the RV.
fit(data) Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution.
median(a, loc=0, scale=1) Median of the distribution.
mean(a, loc=0, scale=1) Mean of the distribution.
var(a, loc=0, scale=1) Variance of the distribution.
std(a, loc=0, scale=1) Standard deviation of the distribution.
interval(confidence, a, loc=0, scale=1) Confidence interval with equal areas around the median.