scipy.stats.landau — SciPy v1.15.2 Manual (original) (raw)
scipy.stats.landau = <scipy.stats._continuous_distns.landau_gen object>[source]#
A Landau continuous random variable.
As an instance of the rv_continuous class, landau object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability density function for landau ([1], [2]) is:
\[f(x) = \frac{1}{\pi}\int_0^\infty \exp(-t \log t - xt)\sin(\pi t) dt\]
for a real number \(x\).
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc
and scale
parameters. Specifically, landau.pdf(x, loc, scale)
is identically equivalent to landau.pdf(y) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Often (e.g. [2]), the Landau distribution is parameterized in terms of a location parameter \(\mu\) and scale parameter \(c\), the latter of which also introduces a location shift. If mu
and c
are used to represent these parameters, this corresponds with SciPy’s parameterization with loc = mu + 2*c / np.pi * np.log(c)
and scale = c
.
This distribution uses routines from the Boost Math C++ library for the computation of the pdf
, cdf
, ppf
, sf
and isf
methods. [1]
References
Landau, L. (1944). “On the energy loss of fast particles by ionization”. J. Phys. (USSR). 8: 201.
[3]
Chambers, J. M., Mallows, C. L., & Stuck, B. (1976). “A method for simulating stable random variables.” Journal of the American Statistical Association, 71(354), 340-344.
Examples
import numpy as np from scipy.stats import landau import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
mean, var, skew, kurt = landau.stats(moments='mvsk')
Display the probability density function (pdf
):
x = np.linspace(landau.ppf(0.01), ... landau.ppf(0.99), 100) ax.plot(x, landau.pdf(x), ... 'r-', lw=5, alpha=0.6, label='landau pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf
:
rv = landau() ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of cdf
and ppf
:
vals = landau.ppf([0.001, 0.5, 0.999]) np.allclose([0.001, 0.5, 0.999], landau.cdf(vals)) True
Generate random numbers:
r = landau.rvs(size=1000)
And compare the histogram:
ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) ax.set_xlim([x[0], x[-1]]) ax.legend(loc='best', frameon=False) plt.show()
Methods
rvs(loc=0, scale=1, size=1, random_state=None) | Random variates. |
---|---|
pdf(x, loc=0, scale=1) | Probability density function. |
logpdf(x, loc=0, scale=1) | Log of the probability density function. |
cdf(x, loc=0, scale=1) | Cumulative distribution function. |
logcdf(x, loc=0, scale=1) | Log of the cumulative distribution function. |
sf(x, loc=0, scale=1) | Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). |
logsf(x, loc=0, scale=1) | Log of the survival function. |
ppf(q, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
isf(q, loc=0, scale=1) | Inverse survival function (inverse of sf). |
moment(order, loc=0, scale=1) | Non-central moment of the specified order. |
stats(loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(loc=0, scale=1) | (Differential) entropy of the RV. |
fit(data) | Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments. |
expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
median(loc=0, scale=1) | Median of the distribution. |
mean(loc=0, scale=1) | Mean of the distribution. |
var(loc=0, scale=1) | Variance of the distribution. |
std(loc=0, scale=1) | Standard deviation of the distribution. |
interval(confidence, loc=0, scale=1) | Confidence interval with equal areas around the median. |