scipy.stats.loglaplace — SciPy v1.15.3 Manual (original) (raw)
scipy.stats.loglaplace = <scipy.stats._continuous_distns.loglaplace_gen object>[source]#
A log-Laplace continuous random variable.
As an instance of the rv_continuous class, loglaplace object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability density function for loglaplace is:
\[\begin{split}f(x, c) = \begin{cases}\frac{c}{2} x^{ c-1} &\text{for } 0 < x < 1\\ \frac{c}{2} x^{-c-1} &\text{for } x \ge 1 \end{cases}\end{split}\]
for \(c > 0\).
loglaplace takes c
as a shape parameter for \(c\).
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc
and scale
parameters. Specifically, loglaplace.pdf(x, c, loc, scale)
is identically equivalent to loglaplace.pdf(y, c) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Suppose a random variable X
follows the Laplace distribution with location a
and scale b
. Then Y = exp(X)
follows the log-Laplace distribution with c = 1 / b
and scale = exp(a)
.
References
T.J. Kozubowski and K. Podgorski, “A log-Laplace growth rate model”, The Mathematical Scientist, vol. 28, pp. 49-60, 2003.
Examples
import numpy as np from scipy.stats import loglaplace import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
c = 3.25 mean, var, skew, kurt = loglaplace.stats(c, moments='mvsk')
Display the probability density function (pdf
):
x = np.linspace(loglaplace.ppf(0.01, c), ... loglaplace.ppf(0.99, c), 100) ax.plot(x, loglaplace.pdf(x, c), ... 'r-', lw=5, alpha=0.6, label='loglaplace pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf
:
rv = loglaplace(c) ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of cdf
and ppf
:
vals = loglaplace.ppf([0.001, 0.5, 0.999], c) np.allclose([0.001, 0.5, 0.999], loglaplace.cdf(vals, c)) True
Generate random numbers:
r = loglaplace.rvs(c, size=1000)
And compare the histogram:
ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) ax.set_xlim([x[0], x[-1]]) ax.legend(loc='best', frameon=False) plt.show()
Methods
rvs(c, loc=0, scale=1, size=1, random_state=None) | Random variates. |
---|---|
pdf(x, c, loc=0, scale=1) | Probability density function. |
logpdf(x, c, loc=0, scale=1) | Log of the probability density function. |
cdf(x, c, loc=0, scale=1) | Cumulative distribution function. |
logcdf(x, c, loc=0, scale=1) | Log of the cumulative distribution function. |
sf(x, c, loc=0, scale=1) | Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). |
logsf(x, c, loc=0, scale=1) | Log of the survival function. |
ppf(q, c, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
isf(q, c, loc=0, scale=1) | Inverse survival function (inverse of sf). |
moment(order, c, loc=0, scale=1) | Non-central moment of the specified order. |
stats(c, loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(c, loc=0, scale=1) | (Differential) entropy of the RV. |
fit(data) | Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments. |
expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
median(c, loc=0, scale=1) | Median of the distribution. |
mean(c, loc=0, scale=1) | Mean of the distribution. |
var(c, loc=0, scale=1) | Variance of the distribution. |
std(c, loc=0, scale=1) | Standard deviation of the distribution. |
interval(confidence, c, loc=0, scale=1) | Confidence interval with equal areas around the median. |