scipy.stats.lognorm — SciPy v1.15.2 Manual (original) (raw)
scipy.stats.lognorm = <scipy.stats._continuous_distns.lognorm_gen object>[source]#
A lognormal continuous random variable.
As an instance of the rv_continuous class, lognorm object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability density function for lognorm is:
\[f(x, s) = \frac{1}{s x \sqrt{2\pi}} \exp\left(-\frac{\log^2(x)}{2s^2}\right)\]
for \(x > 0\), \(s > 0\).
lognorm takes s
as a shape parameter for \(s\).
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc
and scale
parameters. Specifically, lognorm.pdf(x, s, loc, scale)
is identically equivalent to lognorm.pdf(y, s) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Suppose a normally distributed random variable X
has mean mu
and standard deviation sigma
. Then Y = exp(X)
is lognormally distributed with s = sigma
and scale = exp(mu)
.
Examples
import numpy as np from scipy.stats import lognorm import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
s = 0.954 mean, var, skew, kurt = lognorm.stats(s, moments='mvsk')
Display the probability density function (pdf
):
x = np.linspace(lognorm.ppf(0.01, s), ... lognorm.ppf(0.99, s), 100) ax.plot(x, lognorm.pdf(x, s), ... 'r-', lw=5, alpha=0.6, label='lognorm pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf
:
rv = lognorm(s) ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of cdf
and ppf
:
vals = lognorm.ppf([0.001, 0.5, 0.999], s) np.allclose([0.001, 0.5, 0.999], lognorm.cdf(vals, s)) True
Generate random numbers:
r = lognorm.rvs(s, size=1000)
And compare the histogram:
ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) ax.set_xlim([x[0], x[-1]]) ax.legend(loc='best', frameon=False) plt.show()
The logarithm of a log-normally distributed random variable is normally distributed:
import numpy as np import matplotlib.pyplot as plt from scipy import stats fig, ax = plt.subplots(1, 1) mu, sigma = 2, 0.5 X = stats.norm(loc=mu, scale=sigma) Y = stats.lognorm(s=sigma, scale=np.exp(mu)) x = np.linspace(*X.interval(0.999)) y = Y.rvs(size=10000) ax.plot(x, X.pdf(x), label='X (pdf)') ax.hist(np.log(y), density=True, bins=x, label='log(Y) (histogram)') ax.legend() plt.show()
Methods
rvs(s, loc=0, scale=1, size=1, random_state=None) | Random variates. |
---|---|
pdf(x, s, loc=0, scale=1) | Probability density function. |
logpdf(x, s, loc=0, scale=1) | Log of the probability density function. |
cdf(x, s, loc=0, scale=1) | Cumulative distribution function. |
logcdf(x, s, loc=0, scale=1) | Log of the cumulative distribution function. |
sf(x, s, loc=0, scale=1) | Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). |
logsf(x, s, loc=0, scale=1) | Log of the survival function. |
ppf(q, s, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
isf(q, s, loc=0, scale=1) | Inverse survival function (inverse of sf). |
moment(order, s, loc=0, scale=1) | Non-central moment of the specified order. |
stats(s, loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(s, loc=0, scale=1) | (Differential) entropy of the RV. |
fit(data) | Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments. |
expect(func, args=(s,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
median(s, loc=0, scale=1) | Median of the distribution. |
mean(s, loc=0, scale=1) | Mean of the distribution. |
var(s, loc=0, scale=1) | Variance of the distribution. |
std(s, loc=0, scale=1) | Standard deviation of the distribution. |
interval(confidence, s, loc=0, scale=1) | Confidence interval with equal areas around the median. |