describe — SciPy v1.15.2 Manual (original) (raw)
scipy.stats.mstats.
scipy.stats.mstats.describe(a, axis=0, ddof=0, bias=True)[source]#
Computes several descriptive statistics of the passed array.
Parameters:
aarray_like
Data array
axisint or None, optional
Axis along which to calculate statistics. Default 0. If None, compute over the whole array a.
ddofint, optional
degree of freedom (default 0); note that default ddof is different from the same routine in stats.describe
biasbool, optional
If False, then the skewness and kurtosis calculations are corrected for statistical bias.
Returns:
nobsint
(size of the data (discarding missing values)
minmax(int, int)
min, max
meanfloat
arithmetic mean
variancefloat
unbiased variance
skewnessfloat
biased skewness
kurtosisfloat
biased kurtosis
Examples
import numpy as np from scipy.stats.mstats import describe ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1]) describe(ma) DescribeResult(nobs=np.int64(3), minmax=(masked_array(data=0, mask=False, fill_value=999999), masked_array(data=2, mask=False, fill_value=999999)), mean=np.float64(1.0), variance=np.float64(0.6666666666666666), skewness=masked_array(data=0., mask=False, fill_value=1e+20), kurtosis=np.float64(-1.5))