scipy.stats.ncf — SciPy v1.15.3 Manual (original) (raw)
scipy.stats.ncf = <scipy.stats._continuous_distns.ncf_gen object>[source]#
A non-central F distribution continuous random variable.
As an instance of the rv_continuous class, ncf object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability density function for ncf is:
\[\begin{split}f(x, n_1, n_2, \lambda) = \exp\left(\frac{\lambda}{2} + \lambda n_1 \frac{x}{2(n_1 x + n_2)} \right) n_1^{n_1/2} n_2^{n_2/2} x^{n_1/2 - 1} \\ (n_2 + n_1 x)^{-(n_1 + n_2)/2} \gamma(n_1/2) \gamma(1 + n_2/2) \\ \frac{L^{\frac{n_1}{2}-1}_{n_2/2} \left(-\lambda n_1 \frac{x}{2(n_1 x + n_2)}\right)} {B(n_1/2, n_2/2) \gamma\left(\frac{n_1 + n_2}{2}\right)}\end{split}\]
for \(n_1, n_2 > 0\), \(\lambda \ge 0\). Here \(n_1\) is the degrees of freedom in the numerator, \(n_2\) the degrees of freedom in the denominator, \(\lambda\) the non-centrality parameter,\(\gamma\) is the logarithm of the Gamma function, \(L_n^k\) is a generalized Laguerre polynomial and \(B\) is the beta function.
ncf takes dfn
, dfd
and nc
as shape parameters. If nc=0
, the distribution becomes equivalent to the Fisher distribution.
This distribution uses routines from the Boost Math C++ library for the computation of the pdf
, cdf
, ppf
, stats
, sf
andisf
methods. [1]
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc
and scale
parameters. Specifically, ncf.pdf(x, dfn, dfd, nc, loc, scale)
is identically equivalent to ncf.pdf(y, dfn, dfd, nc) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
References
Examples
import numpy as np from scipy.stats import ncf import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
dfn, dfd, nc = 27, 27, 0.416 mean, var, skew, kurt = ncf.stats(dfn, dfd, nc, moments='mvsk')
Display the probability density function (pdf
):
x = np.linspace(ncf.ppf(0.01, dfn, dfd, nc), ... ncf.ppf(0.99, dfn, dfd, nc), 100) ax.plot(x, ncf.pdf(x, dfn, dfd, nc), ... 'r-', lw=5, alpha=0.6, label='ncf pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf
:
rv = ncf(dfn, dfd, nc) ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of cdf
and ppf
:
vals = ncf.ppf([0.001, 0.5, 0.999], dfn, dfd, nc) np.allclose([0.001, 0.5, 0.999], ncf.cdf(vals, dfn, dfd, nc)) True
Generate random numbers:
r = ncf.rvs(dfn, dfd, nc, size=1000)
And compare the histogram:
ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) ax.set_xlim([x[0], x[-1]]) ax.legend(loc='best', frameon=False) plt.show()
Methods
rvs(dfn, dfd, nc, loc=0, scale=1, size=1, random_state=None) | Random variates. |
---|---|
pdf(x, dfn, dfd, nc, loc=0, scale=1) | Probability density function. |
logpdf(x, dfn, dfd, nc, loc=0, scale=1) | Log of the probability density function. |
cdf(x, dfn, dfd, nc, loc=0, scale=1) | Cumulative distribution function. |
logcdf(x, dfn, dfd, nc, loc=0, scale=1) | Log of the cumulative distribution function. |
sf(x, dfn, dfd, nc, loc=0, scale=1) | Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). |
logsf(x, dfn, dfd, nc, loc=0, scale=1) | Log of the survival function. |
ppf(q, dfn, dfd, nc, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
isf(q, dfn, dfd, nc, loc=0, scale=1) | Inverse survival function (inverse of sf). |
moment(order, dfn, dfd, nc, loc=0, scale=1) | Non-central moment of the specified order. |
stats(dfn, dfd, nc, loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(dfn, dfd, nc, loc=0, scale=1) | (Differential) entropy of the RV. |
fit(data) | Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments. |
expect(func, args=(dfn, dfd, nc), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
median(dfn, dfd, nc, loc=0, scale=1) | Median of the distribution. |
mean(dfn, dfd, nc, loc=0, scale=1) | Mean of the distribution. |
var(dfn, dfd, nc, loc=0, scale=1) | Variance of the distribution. |
std(dfn, dfd, nc, loc=0, scale=1) | Standard deviation of the distribution. |
interval(confidence, dfn, dfd, nc, loc=0, scale=1) | Confidence interval with equal areas around the median. |