scipy.stats.planck — SciPy v1.15.2 Manual (original) (raw)
scipy.stats.planck = <scipy.stats._discrete_distns.planck_gen object>[source]#
A Planck discrete exponential random variable.
As an instance of the rv_discrete class, planck object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability mass function for planck is:
\[f(k) = (1-\exp(-\lambda)) \exp(-\lambda k)\]
for \(k \ge 0\) and \(\lambda > 0\).
planck takes \(\lambda\) as shape parameter. The Planck distribution can be written as a geometric distribution (geom) with\(p = 1 - \exp(-\lambda)\) shifted by loc = -1
.
The probability mass function above is defined in the “standardized” form. To shift distribution use the loc
parameter. Specifically, planck.pmf(k, lambda_, loc)
is identically equivalent to planck.pmf(k - loc, lambda_)
.
Examples
import numpy as np from scipy.stats import planck import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
lambda_ = 0.51 mean, var, skew, kurt = planck.stats(lambda_, moments='mvsk')
Display the probability mass function (pmf
):
x = np.arange(planck.ppf(0.01, lambda_), ... planck.ppf(0.99, lambda_)) ax.plot(x, planck.pmf(x, lambda_), 'bo', ms=8, label='planck pmf') ax.vlines(x, 0, planck.pmf(x, lambda_), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pmf
:
rv = planck(lambda_) ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') ax.legend(loc='best', frameon=False) plt.show()
Check accuracy of cdf
and ppf
:
prob = planck.cdf(x, lambda_) np.allclose(x, planck.ppf(prob, lambda_)) True
Generate random numbers:
r = planck.rvs(lambda_, size=1000)
Methods
rvs(lambda_, loc=0, size=1, random_state=None) | Random variates. |
---|---|
pmf(k, lambda_, loc=0) | Probability mass function. |
logpmf(k, lambda_, loc=0) | Log of the probability mass function. |
cdf(k, lambda_, loc=0) | Cumulative distribution function. |
logcdf(k, lambda_, loc=0) | Log of the cumulative distribution function. |
sf(k, lambda_, loc=0) | Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). |
logsf(k, lambda_, loc=0) | Log of the survival function. |
ppf(q, lambda_, loc=0) | Percent point function (inverse of cdf — percentiles). |
isf(q, lambda_, loc=0) | Inverse survival function (inverse of sf). |
stats(lambda_, loc=0, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(lambda_, loc=0) | (Differential) entropy of the RV. |
expect(func, args=(lambda_,), loc=0, lb=None, ub=None, conditional=False) | Expected value of a function (of one argument) with respect to the distribution. |
median(lambda_, loc=0) | Median of the distribution. |
mean(lambda_, loc=0) | Mean of the distribution. |
var(lambda_, loc=0) | Variance of the distribution. |
std(lambda_, loc=0) | Standard deviation of the distribution. |
interval(confidence, lambda_, loc=0) | Confidence interval with equal areas around the median. |