ppcc_max — SciPy v1.15.3 Manual (original) (raw)
scipy.stats.
scipy.stats.ppcc_max(x, brack=(0.0, 1.0), dist='tukeylambda')[source]#
Calculate the shape parameter that maximizes the PPCC.
The probability plot correlation coefficient (PPCC) plot can be used to determine the optimal shape parameter for a one-parameter family of distributions. ppcc_max
returns the shape parameter that would maximize the probability plot correlation coefficient for the given data to a one-parameter family of distributions.
Parameters:
xarray_like
Input array.
bracktuple, optional
Triple (a,b,c) where (a<b<c). If bracket consists of two numbers (a, c) then they are assumed to be a starting interval for a downhill bracket search (see scipy.optimize.brent).
diststr or stats.distributions instance, optional
Distribution or distribution function name. Objects that look enough like a stats.distributions instance (i.e. they have a ppf
method) are also accepted. The default is 'tukeylambda'
.
Returns:
shape_valuefloat
The shape parameter at which the probability plot correlation coefficient reaches its max value.
Notes
The brack keyword serves as a starting point which is useful in corner cases. One can use a plot to obtain a rough visual estimate of the location for the maximum to start the search near it.
References
[1]
J.J. Filliben, “The Probability Plot Correlation Coefficient Test for Normality”, Technometrics, Vol. 17, pp. 111-117, 1975.
Examples
First we generate some random data from a Weibull distribution with shape parameter 2.5:
import numpy as np from scipy import stats import matplotlib.pyplot as plt rng = np.random.default_rng() c = 2.5 x = stats.weibull_min.rvs(c, scale=4, size=2000, random_state=rng)
Generate the PPCC plot for this data with the Weibull distribution.
fig, ax = plt.subplots(figsize=(8, 6)) res = stats.ppcc_plot(x, c/2, 2*c, dist='weibull_min', plot=ax)
We calculate the value where the shape should reach its maximum and a red line is drawn there. The line should coincide with the highest point in the PPCC graph.
cmax = stats.ppcc_max(x, brack=(c/2, 2*c), dist='weibull_min') ax.axvline(cmax, color='r') plt.show()