update_discrepancy — SciPy v1.15.2 Manual (original) (raw)
scipy.stats.qmc.
scipy.stats.qmc.update_discrepancy(x_new, sample, initial_disc)[source]#
Update the centered discrepancy with a new sample.
Parameters:
x_newarray_like (1, d)
The new sample to add in sample.
samplearray_like (n, d)
The initial sample.
initial_discfloat
Centered discrepancy of the sample.
Returns:
discrepancyfloat
Centered discrepancy of the sample composed of x_new and sample.
Examples
We can also compute iteratively the discrepancy by usingiterative=True
.
import numpy as np from scipy.stats import qmc space = np.array([[1, 3], [2, 6], [3, 2], [4, 5], [5, 1], [6, 4]]) l_bounds = [0.5, 0.5] u_bounds = [6.5, 6.5] space = qmc.scale(space, l_bounds, u_bounds, reverse=True) disc_init = qmc.discrepancy(space[:-1], iterative=True) disc_init 0.04769081147119336 qmc.update_discrepancy(space[-1], space[:-1], disc_init) 0.008142039609053513