scipy.stats.random_correlation — SciPy v1.15.2 Manual (original) (raw)
scipy.stats.random_correlation = <scipy.stats._multivariate.random_correlation_gen object>[source]#
A random correlation matrix.
Return a random correlation matrix, given a vector of eigenvalues.
The eigs keyword specifies the eigenvalues of the correlation matrix, and implies the dimension.
Parameters:
eigs1d ndarray
Eigenvalues of correlation matrix
seed{None, int, numpy.random.Generator, numpy.random.RandomState}, optional
If seed is None (or np.random), the numpy.random.RandomStatesingleton is used. If seed is an int, a new RandomState
instance is used, seeded with seed. If seed is already a Generator
or RandomState
instance then that instance is used.
tolfloat, optional
Tolerance for input parameter checks
diag_tolfloat, optional
Tolerance for deviation of the diagonal of the resulting matrix. Default: 1e-7
Returns:
rvsndarray or scalar
Random size N-dimensional matrices, dimension (size, dim, dim), each having eigenvalues eigs.
Raises:
RuntimeError
Floating point error prevented generating a valid correlation matrix.
Notes
Generates a random correlation matrix following a numerically stable algorithm spelled out by Davies & Higham. This algorithm uses a single O(N) similarity transformation to construct a symmetric positive semi-definite matrix, and applies a series of Givens rotations to scale it to have ones on the diagonal.
References
[1]
Davies, Philip I; Higham, Nicholas J; “Numerically stable generation of correlation matrices and their factors”, BIT 2000, Vol. 40, No. 4, pp. 640 651
Examples
import numpy as np from scipy.stats import random_correlation rng = np.random.default_rng() x = random_correlation.rvs((.5, .8, 1.2, 1.5), random_state=rng) x array([[ 1. , -0.02423399, 0.03130519, 0.4946965 ], [-0.02423399, 1. , 0.20334736, 0.04039817], [ 0.03130519, 0.20334736, 1. , 0.02694275], [ 0.4946965 , 0.04039817, 0.02694275, 1. ]]) import scipy.linalg e, v = scipy.linalg.eigh(x) e array([ 0.5, 0.8, 1.2, 1.5])
Methods
rvs(eigs=None, random_state=None) | Draw random correlation matrices, all with eigenvalues eigs. |
---|