scipy.stats.trapezoid — SciPy v1.15.2 Manual (original) (raw)

scipy.stats.trapezoid = <scipy.stats._continuous_distns.trapezoid_gen object>[source]#

A trapezoidal continuous random variable.

As an instance of the rv_continuous class, trapezoid object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The trapezoidal distribution can be represented with an up-sloping line from loc to (loc + c*scale), then constant to (loc + d*scale)and then downsloping from (loc + d*scale) to (loc+scale). This defines the trapezoid base from loc to (loc+scale) and the flat top from c to d proportional to the position along the base with 0 <= c <= d <= 1. When c=d, this is equivalent to triangwith the same values for loc, scale and c. The method of [1] is used for computing moments.

trapezoid takes \(c\) and \(d\) as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, trapezoid.pdf(x, c, d, loc, scale) is identically equivalent to trapezoid.pdf(y, c, d) / scale withy = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

The standard form is in the range [0, 1] with c the mode. The location parameter shifts the start to loc. The scale parameter changes the width from 1 to scale.

References

[1]

Kacker, R.N. and Lawrence, J.F. (2007). Trapezoidal and triangular distributions for Type B evaluation of standard uncertainty. Metrologia 44, 117-127. DOI:10.1088/0026-1394/44/2/003

Examples

import numpy as np from scipy.stats import trapezoid import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

c, d = 0.2, 0.8 mean, var, skew, kurt = trapezoid.stats(c, d, moments='mvsk')

Display the probability density function (pdf):

x = np.linspace(trapezoid.ppf(0.01, c, d), ... trapezoid.ppf(0.99, c, d), 100) ax.plot(x, trapezoid.pdf(x, c, d), ... 'r-', lw=5, alpha=0.6, label='trapezoid pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

rv = trapezoid(c, d) ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

vals = trapezoid.ppf([0.001, 0.5, 0.999], c, d) np.allclose([0.001, 0.5, 0.999], trapezoid.cdf(vals, c, d)) True

Generate random numbers:

r = trapezoid.rvs(c, d, size=1000)

And compare the histogram:

ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) ax.set_xlim([x[0], x[-1]]) ax.legend(loc='best', frameon=False) plt.show()

../../_images/scipy-stats-trapezoid-1.png

Methods

rvs(c, d, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, c, d, loc=0, scale=1) Probability density function.
logpdf(x, c, d, loc=0, scale=1) Log of the probability density function.
cdf(x, c, d, loc=0, scale=1) Cumulative distribution function.
logcdf(x, c, d, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, c, d, loc=0, scale=1) Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).
logsf(x, c, d, loc=0, scale=1) Log of the survival function.
ppf(q, c, d, loc=0, scale=1) Percent point function (inverse of cdf — percentiles).
isf(q, c, d, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(order, c, d, loc=0, scale=1) Non-central moment of the specified order.
stats(c, d, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(c, d, loc=0, scale=1) (Differential) entropy of the RV.
fit(data) Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
expect(func, args=(c, d), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution.
median(c, d, loc=0, scale=1) Median of the distribution.
mean(c, d, loc=0, scale=1) Mean of the distribution.
var(c, d, loc=0, scale=1) Variance of the distribution.
std(c, d, loc=0, scale=1) Standard deviation of the distribution.
interval(confidence, c, d, loc=0, scale=1) Confidence interval with equal areas around the median.