minimize(method=’Newton-CG’) — SciPy v1.15.2 Manual (original) (raw)
scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)
Minimization of scalar function of one or more variables using the Newton-CG algorithm.
Note that the jac parameter (Jacobian) is required.
Options:
——-
dispbool
Set to True to print convergence messages.
xtolfloat
Average relative error in solution xopt acceptable for convergence.
maxiterint
Maximum number of iterations to perform.
epsfloat or ndarray
If hessp is approximated, use this value for the step size.
return_allbool, optional
Set to True to return a list of the best solution at each of the iterations.
c1float, default: 1e-4
Parameter for Armijo condition rule.
c2float, default: 0.9
Parameter for curvature condition rule.
Notes
Parameters c1 and c2 must satisfy 0 < c1 < c2 < 1
.