root(method=’excitingmixing’) — SciPy v1.15.2 Manual (original) (raw)
scipy.optimize.root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None, options=None)
Options:
——-
nitint, optional
Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
dispbool, optional
Print status to stdout on every iteration.
maxiterint, optional
Maximum number of iterations to make.
ftolfloat, optional
Relative tolerance for the residual. If omitted, not used.
fatolfloat, optional
Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
xtolfloat, optional
Relative minimum step size. If omitted, not used.
xatolfloat, optional
Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
tol_normfunction(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search{None, ‘armijo’ (default), ‘wolfe’}, optional
Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.
jac_optionsdict, optional
Options for the respective Jacobian approximation.
alphafloat, optional
Initial Jacobian approximation is (-1/alpha).
alphamaxfloat, optional
The entries of the diagonal Jacobian are kept in the range[alpha, alphamax]
.