snowflake.core.cortex.embed_service.EmbedRequest | Snowflake Documentation (original) (raw)
class snowflake.core.cortex.embed_service.EmbedRequest(*, model: Annotated[str, Strict(strict=True)], text: Annotated[List[Annotated[str, Strict(strict=True)]], MinLen(min_length=1)])¶
Bases: BaseModel
A model object representing the EmbedRequest resource.
Constructs an object of type EmbedRequest with the provided properties.
Parameters:
- model (str) –
Identifier of the model to use for generating embeddings. Refer to Snowflake documentation for the list of supported models.
Examples:- snowflake-arctic-embed-m
- snowflake-arctic-embed-m-v1.5
- text (List [ str ]) – An array of input texts for which vector embeddings will be calculated. Example: [“Hello world”, “Machine learning is fascinating”]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
Methods
classmethod from_dict(obj: dict) → EmbedRequest¶
Create an instance of EmbedRequest from a dict.
classmethod from_json(json_str: str) → EmbedRequest¶
Create an instance of EmbedRequest from a JSON string.
to_dict(hide_readonly_properties: bool = False) → dict[str, Any]¶
Returns the dictionary representation of the model using alias.
to_dict_without_readonly_properties() → dict[str, Any]¶
Return the dictionary representation of the model without readonly properties.
to_json() → str¶
Returns the JSON representation of the model using alias.
to_str() → str¶
Returns the string representation of the model using alias.