xarray.DataTree.mean (original) (raw)

DataTree.mean(dim=None, *, skipna=None, keep_attrs=None, **kwargs)[source]#

Reduce this DataTree’s data by applying mean along some dimension(s).

Parameters:

Returns:

reduced (DataTree) – New DataTree with mean applied to its data and the indicated dimension(s) removed

Notes

Non-numeric variables will be removed prior to reducing.

Examples

dt = xr.DataTree( ... xr.Dataset( ... data_vars=dict(foo=("time", np.array([1, 2, 3, 0, 2, np.nan]))), ... coords=dict( ... time=( ... "time", ... pd.date_range("2001-01-01", freq="ME", periods=6), ... ), ... labels=("time", np.array(["a", "b", "c", "c", "b", "a"])), ... ), ... ), ... ) dt <xarray.DataTree> Group: / Dimensions: (time: 6) Coordinates: * time (time) datetime64[ns] 48B 2001-01-31 2001-02-28 ... 2001-06-30 labels (time) <U1 24B 'a' 'b' 'c' 'c' 'b' 'a' Data variables: foo (time) float64 48B 1.0 2.0 3.0 0.0 2.0 nan

dt.mean() <xarray.DataTree> Group: / Dimensions: () Data variables: foo float64 8B 1.6

Use skipna to control whether NaNs are ignored.

dt.mean(skipna=False) <xarray.DataTree> Group: / Dimensions: () Data variables: foo float64 8B nan