std::ratio_multiply - cppreference.com (original) (raw)

| | | | | --------------------------------------------------------------------------- | | ------------- | | template< class R1, class R2 > using ratio_multiply = /* see below */; | | (since C++11) |

The alias template std::ratio_multiply denotes the result of multiplying two exact rational fractions represented by the std::ratio specializations R1 and R2.

The result is a std::ratio specialization std::ratio<U, V>, such that given Num == R1::num * R2::num and Denom == R1::den * R2::den (computed without arithmetic overflow), U is std::ratio<Num, Denom>::num and V is std::ratio<Num, Denom>::den.

[edit] Notes

If U or V is not representable in std::intmax_t, the program is ill-formed. If Num or Denom is not representable in std::intmax_t, the program is ill-formed unless the implementation yields correct values for U and V.

The above definition requires that the result of std::ratio_multiply<R1, R2> be already reduced to lowest terms; for example, std::ratio_multiply<std::ratio<1, 6>, std::ratio<4, 5>> is the same type as std::ratio<2, 15>.

[edit] Example

#include #include   int main() { using two_third = std::ratio<2, 3>; using one_sixth = std::ratio<1, 6>; using product = std::ratio_multiply<two_third, one_sixth>; static_assert(std::ratio_equal_v<product, std::ratio<13, 117>>); std::cout << "2/3 * 1/6 = " << product::num << '/' << product::den << '\n'; }

Output:

[edit] See also