GeographicLib: GeodesicLineExact.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
30
32
33 using namespace std;
34
35 void GeodesicLineExact::LineInit(const GeodesicExact& g,
38 unsigned caps) {
39 tiny_ = g.tiny_;
41 _lon1 = lon1;
42 _azi1 = azi1;
43 _salp1 = salp1;
44 _calp1 = calp1;
45 _a = g._a;
46 _f = g._f;
47 _b = g._b;
48 _c2 = g._c2;
49 _f1 = g._f1;
50 _e2 = g._e2;
51 _nC4 = g._nC4;
52
54
55 real cbet1, sbet1;
57
58 Math::norm(sbet1, cbet1); cbet1 = fmax(tiny_, cbet1);
59 _dn1 = (_f >= 0 ? sqrt(1 + g._ep2 * Math::sq(sbet1)) :
60 sqrt(1 - _e2 * Math::sq(cbet1)) / _f1);
61
62
63 _salp0 = _salp1 * cbet1;
64
65
66 _calp0 = hypot(_calp1, _salp1 * sbet1);
67
68
69
70
71
72
73
74
75
76 _ssig1 = sbet1; _somg1 = _salp0 * sbet1;
77 _csig1 = _comg1 = sbet1 != 0 || _calp1 != 0 ? cbet1 * _calp1 : 1;
78
79 _cchi1 = _f1 * _dn1 * _comg1;
80 Math::norm(_ssig1, _csig1);
81
82
83
84 _k2 = Math::sq(_calp0) * g._ep2;
85 _eE.Reset(-_k2, -g._ep2, 1 + _k2, 1 + g._ep2);
86
87 if (_caps & CAP_E) {
88 _eE0 = _eE.E() / (Math::pi() / 2);
89 _eE1 = _eE.deltaE(_ssig1, _csig1, _dn1);
90 real s = sin(_eE1), c = cos(_eE1);
91
92 _stau1 = _ssig1 * c + _csig1 * s;
93 _ctau1 = _csig1 * c - _ssig1 * s;
94
95
96 }
97
98 if (_caps & CAP_D) {
99 _dD0 = _eE.D() / (Math::pi() / 2);
100 _dD1 = _eE.deltaD(_ssig1, _csig1, _dn1);
101 }
102
103 if (_caps & CAP_H) {
104 _hH0 = _eE.H() / (Math::pi() / 2);
105 _hH1 = _eE.deltaH(_ssig1, _csig1, _dn1);
106 }
107
108 if (_caps & CAP_C4) {
109
110 _aA4 = Math::sq(_a) * _calp0 * _salp0 * _e2;
111 if (_aA4 == 0)
112 _bB41 = 0;
113 else {
114 GeodesicExact::I4Integrand i4(g._ep2, _k2);
115 _cC4a.resize(_nC4);
116 g._fft.transform(i4, _cC4a.data());
117 _bB41 = DST::integral(_ssig1, _csig1, _cC4a.data(), _nC4);
118 }
119 }
120
122 }
123
125 real lat1, real lon1, real azi1,
126 unsigned caps) {
128 real salp1, calp1;
129
131 LineInit(g, lat1, lon1, azi1, salp1, calp1, caps);
132 }
133
137 unsigned caps,
138 bool arcmode, real s13_a13) {
139 LineInit(g, lat1, lon1, azi1, salp1, calp1, caps);
141 }
142
144 unsigned outmask,
145 real& lat2, real& lon2, real& azi2,
146 real& s12, real& m12,
147 real& M12, real& M21,
148 real& S12) const {
149 outmask &= _caps & OUT_MASK;
150 if (!( Init() && (arcmode || (_caps & (OUT_MASK & DISTANCE_IN))) ))
151
153
154
155 real sig12, ssig12, csig12, E2 = 0, AB1 = 0;
156 if (arcmode) {
157
160 } else {
161
162 real
163 tau12 = s12_a12 / (_b * _eE0),
164 s = sin(tau12),
165 c = cos(tau12);
166
167 E2 = - _eE.deltaEinv(_stau1 * c + _ctau1 * s, _ctau1 * c - _stau1 * s);
168 sig12 = tau12 - (E2 - _eE1);
169 ssig12 = sin(sig12);
170 csig12 = cos(sig12);
171 }
172
173 real ssig2, csig2, sbet2, cbet2, salp2, calp2;
174
175 ssig2 = _ssig1 * csig12 + _csig1 * ssig12;
176 csig2 = _csig1 * csig12 - _ssig1 * ssig12;
177 real dn2 = _eE.Delta(ssig2, csig2);
179 if (arcmode) {
180 E2 = _eE.deltaE(ssig2, csig2, dn2);
181 }
182 AB1 = _eE0 * (E2 - _eE1);
183 }
184
185 sbet2 = _calp0 * ssig2;
186
187 cbet2 = hypot(_salp0, _calp0 * csig2);
188 if (cbet2 == 0)
189
190 cbet2 = csig2 = tiny_;
191
192 salp2 = _salp0; calp2 = _calp0 * csig2;
193
195 s12 = arcmode ? _b * (_eE0 * sig12 + AB1) : s12_a12;
196
198 real somg2 = _salp0 * ssig2, comg2 = csig2,
199 E = copysign(real(1), _salp0);
200
201 real cchi2 = _f1 * dn2 * comg2;
203 ? E * (sig12
204 - (atan2( ssig2, csig2) - atan2( _ssig1, _csig1))
205 + (atan2(E * somg2, cchi2) - atan2(E * _somg1, _cchi1)))
206 : atan2(somg2 * _cchi1 - cchi2 * _somg1,
207 cchi2 * _cchi1 + somg2 * _somg1);
208 real lam12 = chi12 -
209 _e2/_f1 * _salp0 * _hH0 *
210 (sig12 + (_eE.deltaH(ssig2, csig2, dn2) - _hH1));
212 lon2 = outmask & LONG_UNROLL ? _lon1 + lon12 :
215 }
216
219
222
224 real J12 = _k2 * _dD0 * (sig12 + (_eE.deltaD(ssig2, csig2, dn2) - _dD1));
226
227
228 m12 = _b * ((dn2 * (_csig1 * ssig2) - _dn1 * (_ssig1 * csig2))
229 - _csig1 * csig2 * J12);
231 real t = _k2 * (ssig2 - _ssig1) * (ssig2 + _ssig1) / (_dn1 + dn2);
232 M12 = csig12 + (t * ssig2 - csig2 * J12) * _ssig1 / _dn1;
233 M21 = csig12 - (t * _ssig1 - _csig1 * J12) * ssig2 / dn2;
234 }
235 }
236
237 if (outmask & AREA) {
238 real B42 = _aA4 == 0 ? 0 :
240 real salp12, calp12;
241 if (_calp0 == 0 || _salp0 == 0) {
242
243 salp12 = salp2 * _calp1 - calp2 * _salp1;
244 calp12 = calp2 * _calp1 + salp2 * _salp1;
245
246
247
248
249
250
251
252 } else {
253
254
255
256
257
258
259
260
261 salp12 = _calp0 * _salp0 *
262 (csig12 <= 0 ? _csig1 * (1 - csig12) + ssig12 * _ssig1 :
263 ssig12 * (_csig1 * ssig12 / (1 + csig12) + _ssig1));
264 calp12 = Math::sq(_salp0) + Math::sq(_calp0) * _csig1 * csig2;
265 }
266 S12 = _c2 * atan2(salp12, calp12) + _aA4 * (B42 - _bB41);
267 }
268
269 return arcmode ? s12_a12 : sig12 / Math::degree();
270 }
271
273 _s13 = s13;
274 real t;
275
276
277 _a13 = GenPosition(false, _s13, 0u, t, t, t, t, t, t, t, t);
278 }
279
281 _a13 = a13;
282
284 real t;
285 GenPosition(true, _a13, DISTANCE, t, t, t, _s13, t, t, t, t);
286 }
287
291
292}
GeographicLib::Math::real real
Header for GeographicLib::GeodesicLineExact class.
static real integral(real sinx, real cosx, const real F[], int N)
Math::real deltaE(real sn, real cn, real dn) const
void Reset(real k2=0, real alpha2=0)
Math::real Delta(real sn, real cn) const
Math::real deltaD(real sn, real cn, real dn) const
Math::real deltaH(real sn, real cn, real dn) const
Math::real deltaEinv(real stau, real ctau) const
Exact geodesic calculations.
void SetArc(real a13)
Definition GeodesicLineExact.cpp:280
Math::real GenPosition(bool arcmode, real s12_a12, unsigned outmask, real &lat2, real &lon2, real &azi2, real &s12, real &m12, real &M12, real &M21, real &S12) const
Definition GeodesicLineExact.cpp:143
void SetDistance(real s13)
Definition GeodesicLineExact.cpp:272
void GenSetDistance(bool arcmode, real s13_a13)
Definition GeodesicLineExact.cpp:288
static void sincosd(T x, T &sinx, T &cosx)
static T atan2d(T y, T x)
static void norm(T &x, T &y)
static T AngNormalize(T x)
Namespace for GeographicLib.