Krueger's series for the transverse Mercator projection (original) (raw)

This extends Krueger's series for the transverse Mercator projection given in here to 30th order in the flattening. See

Louis Krueger, Konforme Abbildung des Erdellipsoids in der Ebene, Royal Prussian Geodetic Institute, New Series 52, 172 pp. (1912), DOI: 10.2312/GFZ.b103-krueger28

and

Charles F. F. Karney, Transverse Mercator with an accuracy of a few nanometers, J. Geodesy 85(8), 475–485 (Aug. 2011); preprintarXiv:1002.1417; resource pagetm.html.

Krueger, p. 12, Eq. (5) A = a/(n + 1) * (1 + 1/4 * n^2 + 1/64 * n^4 + 1/256 * n^6 + 25/16384 * n^8 + 49/65536 * n^10 + 441/1048576 * n^12 + 1089/4194304 * n^14 + 184041/1073741824 * n^16 + 511225/4294967296 * n^18 + 5909761/68719476736 * n^20 + 17631601/274877906944 * n^22 + 863948449/17592186044416 * n^24 + 2704312009/70368744177664 * n^26 + 34493775625/1125899906842624 * n^28 + 111759833025/4503599627370496 * n^30);

Krueger's gamma[j], p. 21, Eq. (41) alpha[1] = 1/2 * n

Krueger, p. 18, Eq. (26*) beta[1] = 1/2 * n