JSDoc: Module: geodesic/Math (original) (raw)

Members

(static) atanh

Inverse hyperbolic tangent.

Source:

(static) cbrt

Cube root function.

Source:

(static, constant) degree :number

The factor to convert degrees to radians.

Type:

Source:

(static, constant) digits :number

The number of digits of precision in floating-point numbers.

Type:

Source:

(static, constant) epsilon :number

The machine epsilon.

Type:

Source:

(static) log1p

The log1p function.

Source:

Methods

(static) AngDiff(x, y) → {object}

The exact difference of two angles reduced to [−180°, 180°]

Parameters:
Name Type Description
x number the first angle in degrees.
y number the second angle in degrees.

Source:

Returns:

diff the exact difference, diff.d + diff.e = y − x mod 360°.

This computes z = y − x exactly, reduced to [−180°, 180°]; and then sets z = d + e where d is the nearest representable number to z and e is the truncation error. If z = ±0° or ±180°, then the sign of d is given by the sign of y − x. The maximum absolute value of e is 2−26 (for doubles).

Type

object

(static) AngNormalize(x) → {number}

Normalize an angle.

Parameters:
Name Type Description
x number the angle in degrees.

Source:

Returns:

the angle reduced to the range [−180°, 180°].

The range of x is unrestricted. If the result is ±0° or ±180° then the sign is the sign of \e x.

Type

number

(static) AngRound(x) → {number}

Coarsen a value close to zero.

Parameters:
Name Type Description
x number

Source:

Returns:

the coarsened value.

Type

number

(static) LatFix(x) → {number}

Normalize a latitude.

Parameters:
Name Type Description
x number the angle in degrees.

Source:

Returns:

x if it is in the range [−90°, 90°], otherwise return NaN.

Type

number

(static) atan2d(y, x)

Evaluate the atan2 function with the result in degrees

Parameters:
Name Type Description
y number
x number

Source:

Returns:

atan2(y, x) in degrees, in the range [−180° 180°].

(static) copysign(x, y) → {number}

Copy the sign.

Parameters:
Name Type Description
x number gives the magitude of the result.
y number gives the sign of the result.

Source:

Returns:

value with the magnitude of x and with the sign of y.

Type

number

(static) hypot(x, y) → {number}

The hypotenuse function.

Parameters:
Name Type Description
x number the first side.
y number the second side.

Source:

Returns:

the hypotenuse.

Type

number

(static) polyval(N, p, x) → {number}

Evaluate a polynomial.

Parameters:
Name Type Description
N integer the order of the polynomial.
p array the coefficient array (of size N + 1) (leading order coefficient first)
x number the variable.

Source:

Returns:

the value of the polynomial.

Type

number

(static) remainder(x, y) → {number}

The remainder function.

Parameters:
Name Type Description
x number the numerator of the division
y number the denominator of the division

Source:

Returns:

the remainder in the range [−y/2, y/2].

The range of x is unrestricted; y must be positive.

Type

number

(static) sincosd(x) → {object}

Evaluate the sine and cosine function with the argument in degrees

Parameters:
Name Type Description
x number in degrees.

Source:

Returns:

r with r.s = sin(x) and r.c = cos(x).

Type

object

(static) sincosde(x, t) → {object}

Evaluate the sine and cosine with reduced argument plus correction

Parameters:
Name Type Description
x number reduced angle in degrees.
t number correction in degrees.

Source:

Returns:

r with r.s = sin(x + t) and r.c = cos(x + t).

Type

object

(static) sq(x) → {number}

Square a number.

Parameters:
Name Type Description
x number the number.

Source:

Returns:

the square.

Type

number

(static) sum(u, v) → {object}

An error-free sum.

Parameters:
Name Type Description
u number
v number

Source:

Returns:

sum with sum.s = round(u + v) and sum.t is u + v − round(u + v)

Type

object