Ginkgo: The adaptiveprecision-blockjacobi program (original) (raw)
The preconditioned solver example..
This example depends on preconditioned-solver.
Table of contents | |
---|---|
Introduction The commented program | Results Comments about programming and debugging The plain program |
This example shows how to use the adaptive precision block-Jacobi preconditioner.
In this example, we first read in a matrix from file, then generate a right-hand side and an initial guess. The preconditioned CG solver is enhanced with a block-Jacobi preconditioner that optimizes the storage format for the distinct inverted diagonal blocks to the numerical requirements. The example features the iteration count and runtime of the CG solver.
The commented program
const auto executor_string = argc >= 2 ? argv[1] : "reference";
Figure out where to run the code
std::map<std::string, std::function<std::shared_ptrgko::Executor()>>
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
executor where Ginkgo will perform the computation
const auto exec = exec_map.at(executor_string)();
Read data
auto A = share(gko::read(std::ifstream("data/A.mtx"), exec));
Create RHS and initial guess as 1
auto host_x = vec::create(exec->get_master(), gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 1.;
}
Calculate initial residual by overwriting b
auto one = gko::initialize({1.0}, exec);
auto neg_one = gko::initialize({-1.0}, exec);
auto initres = gko::initialize<real_vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
copy b again
Create solver factory
const RealValueType reduction_factor = 1e-7;
auto solver_gen =
cg::build()
.with_criteria(gko::stop::Iteration::build().with_max_iters(10000u),
.with_reduction_factor(reduction_factor))
Add preconditioner, these 2 lines are the only difference from the simple solver example
.with_preconditioner(
bj::build().with_max_block_size(16u).with_storage_optimization(
.on(exec);
Create solver
std::shared_ptr<const gko:🪵:Convergence> logger =
solver_gen->add_logger(logger);
auto solver = solver_gen->generate(A);
Solve system
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_caststd::chrono::nanoseconds(toc - tic);
Get residual
auto res = gko::as<real_vec>(logger->get_residual_norm());
auto impl_res = gko::as<real_vec>(logger->get_implicit_sq_resnorm());
std::cout << "Initial residual norm sqrt(r^T r):\n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r):\n";
write(std::cout, res);
std::cout << "Implicit residual norm squared (r^2):\n";
write(std::cout, impl_res);
Print solver statistics
std::cout << "CG iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "CG execution time [ms]: "
<< static_cast(time.count()) / 1000000.0 << std::endl;
}
Results
This is the expected output:
Initial residual norm sqrt(r^T r):
%%MatrixMarket matrix array real general
1 1
194.679
Final residual norm sqrt(r^T r):
%%MatrixMarket matrix array real general
1 1
5.69384e-06
Implicit residual norm squared (r^2):
%%MatrixMarket matrix array real general
1 1
1.27043e-15
CG iteration count: 5
CG execution time [ms]: 0.080041
Comments about programming and debugging
The plain program
#include
#include
#include
#include
#include
#include <ginkgo/ginkgo.hpp>
int main(int argc, char* argv[])
{
using ValueType = double;
using IndexType = int;
if (argc == 2 && (std::string(argv[1]) == "--help")) {
std::cerr << "Usage: " << argv[0] << " [executor]" << std::endl;
std::exit(-1);
}
const auto executor_string = argc >= 2 ? argv[1] : "reference";
std::map<std::string, std::function<std::shared_ptrgko::Executor()>>
exec_map{
{"cuda",
[] {
}},
{"hip",
[] {
}},
{"dpcpp",
[] {
}},
{"reference", [] { return gko::ReferenceExecutor::create(); }}};
const auto exec = exec_map.at(executor_string)();
auto A = share(gko::read(std::ifstream("data/A.mtx"), exec));
auto host_x = vec::create(exec->get_master(), gko::dim<2>(size, 1));
for (auto i = 0; i < size; i++) {
host_x->at(i, 0) = 1.;
}
auto one = gko::initialize({1.0}, exec);
auto neg_one = gko::initialize({-1.0}, exec);
auto initres = gko::initialize<real_vec>({0.0}, exec);
A->apply(one, x, neg_one, b);
b->compute_norm2(initres);
b->copy_from(host_x);
const RealValueType reduction_factor = 1e-7;
auto solver_gen =
cg::build()
.with_criteria(gko::stop::Iteration::build().with_max_iters(10000u),
.with_reduction_factor(reduction_factor))
.with_preconditioner(
bj::build().with_max_block_size(16u).with_storage_optimization(
.on(exec);
std::shared_ptr<const gko:🪵:Convergence> logger =
solver_gen->add_logger(logger);
auto solver = solver_gen->generate(A);
exec->synchronize();
std::chrono::nanoseconds time(0);
auto tic = std::chrono::steady_clock::now();
auto toc = std::chrono::steady_clock::now();
time += std::chrono::duration_caststd::chrono::nanoseconds(toc - tic);
auto res = gko::as<real_vec>(logger->get_residual_norm());
auto impl_res = gko::as<real_vec>(logger->get_implicit_sq_resnorm());
std::cout << "Initial residual norm sqrt(r^T r):\n";
write(std::cout, initres);
std::cout << "Final residual norm sqrt(r^T r):\n";
write(std::cout, res);
std::cout << "Implicit residual norm squared (r^2):\n";
write(std::cout, impl_res);
std::cout << "CG iteration count: " << logger->get_num_iterations()
<< std::endl;
std::cout << "CG execution time [ms]: "
<< static_cast(time.count()) / 1000000.0 << std::endl;
}
static std::unique_ptr< Convergence > create(std::shared_ptr< const Executor >, const mask_type &enabled_events=Logger::criterion_events_mask|Logger::iteration_complete_mask)
Creates a convergence logger.
Definition: convergence.hpp:73
constexpr static precision_reduction autodetect() noexcept
Returns a special encoding which instructs the algorithm to automatically detect the best precision.
Definition: types.hpp:314
static std::shared_ptr< HipExecutor > create(int device_id, std::shared_ptr< Executor > master, bool device_reset, allocation_mode alloc_mode=default_hip_alloc_mode, CUstream_st *stream=nullptr)
Creates a new HipExecutor.
void write(StreamType &&os, MatrixPtrType &&matrix, layout_type layout=detail::mtx_io_traits< std::remove_cv_t< detail::pointee< MatrixPtrType >>>::default_layout)
Writes a matrix into an output stream in matrix market format.
Definition: mtx_io.hpp:295
static std::shared_ptr< CudaExecutor > create(int device_id, std::shared_ptr< Executor > master, bool device_reset, allocation_mode alloc_mode=default_cuda_alloc_mode, CUstream_st *stream=nullptr)
Creates a new CudaExecutor.
static std::shared_ptr< OmpExecutor > create(std::shared_ptr< CpuAllocatorBase > alloc=std::make_shared< CpuAllocator >())
Creates a new OmpExecutor.
Definition: executor.hpp:1396
static std::shared_ptr< DpcppExecutor > create(int device_id, std::shared_ptr< Executor > master, std::string device_type="all", dpcpp_queue_property property=dpcpp_queue_property::in_order)
Creates a new DpcppExecutor.