UniDiffuser (original) (raw)

LoRA

The UniDiffuser model was proposed in One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale by Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang Su, Jun Zhu.

The abstract from the paper is:

This paper proposes a unified diffusion framework (dubbed UniDiffuser) to fit all distributions relevant to a set of multi-modal data in one model. Our key insight is — learning diffusion models for marginal, conditional, and joint distributions can be unified as predicting the noise in the perturbed data, where the perturbation levels (i.e. timesteps) can be different for different modalities. Inspired by the unified view, UniDiffuser learns all distributions simultaneously with a minimal modification to the original diffusion model — perturbs data in all modalities instead of a single modality, inputs individual timesteps in different modalities, and predicts the noise of all modalities instead of a single modality. UniDiffuser is parameterized by a transformer for diffusion models to handle input types of different modalities. Implemented on large-scale paired image-text data, UniDiffuser is able to perform image, text, text-to-image, image-to-text, and image-text pair generation by setting proper timesteps without additional overhead. In particular, UniDiffuser is able to produce perceptually realistic samples in all tasks and its quantitative results (e.g., the FID and CLIP score) are not only superior to existing general-purpose models but also comparable to the bespoken models (e.g., Stable Diffusion and DALL-E 2) in representative tasks (e.g., text-to-image generation).

You can find the original codebase at thu-ml/unidiffuser and additional checkpoints at thu-ml.

There is currently an issue on PyTorch 1.X where the output images are all black or the pixel values become NaNs. This issue can be mitigated by switching to PyTorch 2.X.

This pipeline was contributed by dg845. ❤️

Usage Examples

Because the UniDiffuser model is trained to model the joint distribution of (image, text) pairs, it is capable of performing a diverse range of generation tasks:

Unconditional Image and Text Generation

Unconditional generation (where we start from only latents sampled from a standard Gaussian prior) from a UniDiffuserPipeline will produce a (image, text) pair:

import torch

from diffusers import UniDiffuserPipeline

device = "cuda" model_id_or_path = "thu-ml/unidiffuser-v1" pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16) pipe.to(device)

sample = pipe(num_inference_steps=20, guidance_scale=8.0) image = sample.images[0] text = sample.text[0] image.save("unidiffuser_joint_sample_image.png") print(text)

This is also called “joint” generation in the UniDiffuser paper, since we are sampling from the joint image-text distribution.

Note that the generation task is inferred from the inputs used when calling the pipeline. It is also possible to manually specify the unconditional generation task (“mode”) manually with UniDiffuserPipeline.set_joint_mode():

pipe.set_joint_mode() sample = pipe(num_inference_steps=20, guidance_scale=8.0)

When the mode is set manually, subsequent calls to the pipeline will use the set mode without attempting to infer the mode. You can reset the mode with UniDiffuserPipeline.reset_mode(), after which the pipeline will once again infer the mode.

You can also generate only an image or only text (which the UniDiffuser paper calls “marginal” generation since we sample from the marginal distribution of images and text, respectively):

pipe.set_image_mode() sample_image = pipe(num_inference_steps=20).images[0]

pipe.set_text_mode() sample_text = pipe(num_inference_steps=20).text[0]

Text-to-Image Generation

UniDiffuser is also capable of sampling from conditional distributions; that is, the distribution of images conditioned on a text prompt or the distribution of texts conditioned on an image. Here is an example of sampling from the conditional image distribution (text-to-image generation or text-conditioned image generation):

import torch

from diffusers import UniDiffuserPipeline

device = "cuda" model_id_or_path = "thu-ml/unidiffuser-v1" pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16) pipe.to(device)

prompt = "an elephant under the sea"

sample = pipe(prompt=prompt, num_inference_steps=20, guidance_scale=8.0) t2i_image = sample.images[0] t2i_image

The text2img mode requires that either an input prompt or prompt_embeds be supplied. You can set the text2img mode manually with UniDiffuserPipeline.set_text_to_image_mode().

Image-to-Text Generation

Similarly, UniDiffuser can also produce text samples given an image (image-to-text or image-conditioned text generation):

import torch

from diffusers import UniDiffuserPipeline from diffusers.utils import load_image

device = "cuda" model_id_or_path = "thu-ml/unidiffuser-v1" pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16) pipe.to(device)

image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg" init_image = load_image(image_url).resize((512, 512))

sample = pipe(image=init_image, num_inference_steps=20, guidance_scale=8.0) i2t_text = sample.text[0] print(i2t_text)

The img2text mode requires that an input image be supplied. You can set the img2text mode manually with UniDiffuserPipeline.set_image_to_text_mode().

Image Variation

The UniDiffuser authors suggest performing image variation through a “round-trip” generation method, where given an input image, we first perform an image-to-text generation, and then perform a text-to-image generation on the outputs of the first generation. This produces a new image which is semantically similar to the input image:

import torch

from diffusers import UniDiffuserPipeline from diffusers.utils import load_image

device = "cuda" model_id_or_path = "thu-ml/unidiffuser-v1" pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16) pipe.to(device)

image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg" init_image = load_image(image_url).resize((512, 512))

sample = pipe(image=init_image, num_inference_steps=20, guidance_scale=8.0) i2t_text = sample.text[0] print(i2t_text)

sample = pipe(prompt=i2t_text, num_inference_steps=20, guidance_scale=8.0) final_image = sample.images[0] final_image.save("unidiffuser_image_variation_sample.png")

Text Variation

Similarly, text variation can be performed on an input prompt with a text-to-image generation followed by a image-to-text generation:

import torch

from diffusers import UniDiffuserPipeline

device = "cuda" model_id_or_path = "thu-ml/unidiffuser-v1" pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16) pipe.to(device)

prompt = "an elephant under the sea"

sample = pipe(prompt=prompt, num_inference_steps=20, guidance_scale=8.0) t2i_image = sample.images[0] t2i_image.save("unidiffuser_text2img_sample_image.png")

sample = pipe(image=t2i_image, num_inference_steps=20, guidance_scale=8.0) final_prompt = sample.text[0] print(final_prompt)

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

UniDiffuserPipeline

class diffusers.UniDiffuserPipeline

< source >

( vae: AutoencoderKL text_encoder: CLIPTextModel image_encoder: CLIPVisionModelWithProjection clip_image_processor: CLIPImageProcessor clip_tokenizer: CLIPTokenizer text_decoder: UniDiffuserTextDecoder text_tokenizer: GPT2Tokenizer unet: UniDiffuserModel scheduler: KarrasDiffusionSchedulers )

Parameters

Pipeline for a bimodal image-text model which supports unconditional text and image generation, text-conditioned image generation, image-conditioned text generation, and joint image-text generation.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

__call__

< source >

( prompt: typing.Union[str, typing.List[str], NoneType] = None image: typing.Union[torch.Tensor, PIL.Image.Image, NoneType] = None height: typing.Optional[int] = None width: typing.Optional[int] = None data_type: typing.Optional[int] = 1 num_inference_steps: int = 50 guidance_scale: float = 8.0 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None num_images_per_prompt: typing.Optional[int] = 1 num_prompts_per_image: typing.Optional[int] = 1 eta: float = 0.0 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.Tensor] = None prompt_latents: typing.Optional[torch.Tensor] = None vae_latents: typing.Optional[torch.Tensor] = None clip_latents: typing.Optional[torch.Tensor] = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True callback: typing.Optional[typing.Callable[[int, int, torch.Tensor], NoneType]] = None callback_steps: int = 1 ) → ImageTextPipelineOutput or tuple

Parameters

If return_dict is True, ImageTextPipelineOutput is returned, otherwise atuple is returned where the first element is a list with the generated images and the second element is a list of generated texts.

The call function to the pipeline for generation.

Disable sliced VAE decoding. If enable_vae_slicing was previously enabled, this method will go back to computing decoding in one step.

Disable tiled VAE decoding. If enable_vae_tiling was previously enabled, this method will go back to computing decoding in one step.

Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.

encode_prompt

< source >

( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None lora_scale: typing.Optional[float] = None clip_skip: typing.Optional[int] = None )

Parameters

Encodes the prompt into text encoder hidden states.

Removes a manually set mode; after calling this, the pipeline will infer the mode from inputs.

Manually set the generation mode to unconditional (“marginal”) image generation.

Manually set the generation mode to image-conditioned text generation.

Manually set the generation mode to unconditional joint image-text generation.

Manually set the generation mode to unconditional (“marginal”) text generation.

Manually set the generation mode to text-conditioned image generation.

ImageTextPipelineOutput

class diffusers.ImageTextPipelineOutput

< source >

( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray, NoneType] text: typing.Union[typing.List[str], typing.List[typing.List[str]], NoneType] )

Parameters

Output class for joint image-text pipelines.

< > Update on GitHub