ResNet (original) (raw)

PyTorch TensorFlow Flax

Overview

The ResNet model was proposed in Deep Residual Learning for Image Recognition by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Our implementation follows the small changes made by Nvidia, we apply the stride=2 for downsampling in bottleneck’s 3x3 conv and not in the first 1x1. This is generally known as β€œResNet v1.5”.

ResNet introduced residual connections, they allow to train networks with an unseen number of layers (up to 1000). ResNet won the 2015 ILSVRC & COCO competition, one important milestone in deep computer vision.

The abstract from the paper is the following:

Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

The figure below illustrates the architecture of ResNet. Taken from the original paper.

This model was contributed by Francesco. The TensorFlow version of this model was added by amyeroberts. The original code can be found here.

Resources

A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ResNet.

If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we’ll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

ResNetConfig

class transformers.ResNetConfig

< source >

( num_channels = 3 embedding_size = 64 hidden_sizes = [256, 512, 1024, 2048] depths = [3, 4, 6, 3] layer_type = 'bottleneck' hidden_act = 'relu' downsample_in_first_stage = False downsample_in_bottleneck = False out_features = None out_indices = None **kwargs )

Parameters

This is the configuration class to store the configuration of a ResNetModel. It is used to instantiate an ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ResNetmicrosoft/resnet-50 architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Example:

from transformers import ResNetConfig, ResNetModel

configuration = ResNetConfig()

model = ResNetModel(configuration)

configuration = model.config

ResNetModel

class transformers.ResNetModel

< source >

( config )

Parameters

The bare Resnet Model outputting raw hidden-states without any specific head on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< source >

( pixel_values: Tensor output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β†’ transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention or tuple(torch.FloatTensor)

Parameters

Returns

transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention or tuple(torch.FloatTensor)

A transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention or a tuple oftorch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (ResNetConfig) and inputs.

The ResNetModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

ResNetForImageClassification

class transformers.ResNetForImageClassification

< source >

( config )

Parameters

ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< source >

( pixel_values: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β†’ transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

Parameters

A transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or a tuple oftorch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (ResNetConfig) and inputs.

The ResNetForImageClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

from transformers import AutoImageProcessor, ResNetForImageClassification import torch from datasets import load_dataset

dataset = load_dataset("huggingface/cats-image", trust_remote_code=True) image = dataset["test"]["image"][0]

image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")

inputs = image_processor(image, return_tensors="pt")

with torch.no_grad(): ... logits = model(**inputs).logits

predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]) ...

TFResNetModel

class transformers.TFResNetModel

< source >

( config: ResNetConfig **kwargs )

Parameters

The bare ResNet model outputting raw features without any specific head on top. This model is a TensorFlowkeras.layers.Layer sub-class. Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.

call

< source >

( pixel_values: Tensor output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None training: bool = False ) β†’ transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention or tuple(tf.Tensor)

Parameters

Returns

transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention or tuple(tf.Tensor)

A transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention or a tuple of tf.Tensor (ifreturn_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (ResNetConfig) and inputs.

The TFResNetModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

from transformers import AutoImageProcessor, TFResNetModel from datasets import load_dataset

dataset = load_dataset("huggingface/cats-image", trust_remote_code=True) image = dataset["test"]["image"][0]

image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") model = TFResNetModel.from_pretrained("microsoft/resnet-50")

inputs = image_processor(image, return_tensors="tf") outputs = model(**inputs)

last_hidden_states = outputs.last_hidden_state list(last_hidden_states.shape) [1, 2048, 7, 7]

TFResNetForImageClassification

class transformers.TFResNetForImageClassification

< source >

( config: ResNetConfig **kwargs )

Parameters

ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet.

This model is a TensorFlowkeras.layers.Layer sub-class. Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.

call

< source >

( pixel_values: typing.Optional[tensorflow.python.framework.tensor.Tensor] = None labels: typing.Optional[tensorflow.python.framework.tensor.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None training: bool = False ) β†’ transformers.modeling_tf_outputs.TFImageClassifierOutputWithNoAttention or tuple(tf.Tensor)

Parameters

Returns

transformers.modeling_tf_outputs.TFImageClassifierOutputWithNoAttention or tuple(tf.Tensor)

A transformers.modeling_tf_outputs.TFImageClassifierOutputWithNoAttention or a tuple of tf.Tensor (ifreturn_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (ResNetConfig) and inputs.

The TFResNetForImageClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

from transformers import AutoImageProcessor, TFResNetForImageClassification import tensorflow as tf from datasets import load_dataset

dataset = load_dataset("huggingface/cats-image", trust_remote_code=True) image = dataset["test"]["image"][0]

image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") model = TFResNetForImageClassification.from_pretrained("microsoft/resnet-50")

inputs = image_processor(image, return_tensors="tf") logits = model(**inputs).logits

predicted_label = int(tf.math.argmax(logits, axis=-1)) print(model.config.id2label[predicted_label]) tiger cat

FlaxResNetModel

class transformers.FlaxResNetModel

< source >

( config: ResNetConfig input_shape = (1, 224, 224, 3) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

Parameters

The bare ResNet model outputting raw features without any specific head on top.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also aflax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

__call__

< source >

( pixel_values params: typing.Optional[dict] = None train: bool = False output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β†’ transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPoolingAndNoAttention or tuple(torch.FloatTensor)

Returns

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPoolingAndNoAttention or tuple(torch.FloatTensor)

A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPoolingAndNoAttention or a tuple oftorch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (<class 'transformers.models.resnet.configuration_resnet.ResNetConfig'>) and inputs.

The FlaxResNetPreTrainedModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

from transformers import AutoImageProcessor, FlaxResNetModel from PIL import Image import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") model = FlaxResNetModel.from_pretrained("microsoft/resnet-50") inputs = image_processor(images=image, return_tensors="np") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state

FlaxResNetForImageClassification

class transformers.FlaxResNetForImageClassification

< source >

( config: ResNetConfig input_shape = (1, 224, 224, 3) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

Parameters

ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet.

This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also aflax.linen.Module subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

Finally, this model supports inherent JAX features such as:

__call__

< source >

( pixel_values params: typing.Optional[dict] = None train: bool = False output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β†’ transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

Returns

transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

A transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention or a tuple oftorch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (<class 'transformers.models.resnet.configuration_resnet.ResNetConfig'>) and inputs.

The FlaxResNetPreTrainedModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

from transformers import AutoImageProcessor, FlaxResNetForImageClassification from PIL import Image import jax import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw)

image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") model = FlaxResNetForImageClassification.from_pretrained("microsoft/resnet-50")

inputs = image_processor(images=image, return_tensors="np") outputs = model(**inputs) logits = outputs.logits

predicted_class_idx = jax.numpy.argmax(logits, axis=-1) print("Predicted class:", model.config.id2label[predicted_class_idx.item()])

< > Update on GitHub